IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924008833.html
   My bibliography  Save this article

Forecasting building energy demand and on-site power generation for residential buildings using long and short-term memory method with transfer learning

Author

Listed:
  • Kim, Dongsu
  • Seomun, Gu
  • Lee, Yongjun
  • Cho, Heejin
  • Chin, Kyungil
  • Kim, Min-Hwi

Abstract

This study evaluates the effectiveness of the long and short-term (LSTM) implementation with a particular emphasis on assessing the impact of transfer learning techniques in improving prediction accuracy for building energy demand and on-site power outputs using empirical data from real-world building environments. The initial study utilized simulated data from a single-family prototype building model, employing cluster analysis to segment the training and testing datasets based on distinct cooling and heating periods. Subsequently, real-world data from an existing residential building was incorporated by utilizing LSTM-based transfer learning to improve the prediction accuracy of building energy demand and on-site power generation within a target domain. The training and testing phases involved pre-processed datasets with distinct time-series datasets for environmental, electricity demand, and on-site power generation data. The input variables in the architecture of the machine learning model included environmental, time-related data, and past-day energy datasets. This study also implemented interquartile range (IQR) analysis during the data pre-processing phase to effectively bridge the gap between the source and target domain feature and label spaces to minimize discrepancies and improve the accuracy of prediction performance. The results showed the LSTM model initially developed for a source domain effectively predicted energy demand and on-site power generation across summer and winter. Within target tasks, while initial transfer learning enhancements in prediction accuracy were modest due to each domain's low relevancies in their features and labels, significant improvements were achieved following strategic data pre-processing. The results underscored the importance of detailed pre-processing analysis in LSTM-based transfer learning models for accurate energy demand forecasting in real-world settings. The integration of transfer learning with IQR analysis refined the prediction capabilities of the models under practical conditions.

Suggested Citation

  • Kim, Dongsu & Seomun, Gu & Lee, Yongjun & Cho, Heejin & Chin, Kyungil & Kim, Min-Hwi, 2024. "Forecasting building energy demand and on-site power generation for residential buildings using long and short-term memory method with transfer learning," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008833
    DOI: 10.1016/j.apenergy.2024.123500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.