IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924019512.html
   My bibliography  Save this article

Multi-scale collaborative modeling and deep learning-based thermal prediction for air-cooled data centers: An innovative insight for thermal management

Author

Listed:
  • Wang, Ningbo
  • Guo, Yanhua
  • Huang, Congqi
  • Tian, Bo
  • Shao, Shuangquan

Abstract

Investigating the data center (DC) thermal environment and temperature distribution is crucial to responding to unforeseen events such as equipment failure or environmental changes. However, building full-scale simulation models from DC room level to chip level faces significant challenges. In this paper, we propose a distinctive approach that combines multi-scale collaborative modeling with deep learning techniques for thermal prediction in air-cooled DCs. By taking the simulation results of the parent model as the boundary conditions of the child model, we constructed the DC multi-scale simulation model, which significantly reduces the model complexity and computational resources. Leveraging experimental data, the models at different scales were validated separately. The effects of different cooling strategies, air supply temperatures and air supply flow rates on multi-scale simulation models were investigated. Based on the parametric simulation approach, datasets for training data-driven models are constructed. Simultaneously, we propose the CNN-BiLSTM-Attention neural network model to predict the maximum CPU temperature and optimize the hyperparameters of the neural network through by Bayesian optimization. The prediction results of the coupled multi-scale model and the deep learning prediction model show that the absolute error is controlled within ±0.1 K, and the R2 value of the model evaluation metric is as high as 0.9899. Herein, the results provide valuable insights for enhancing thermal management in air-cooled DCs, paving the way for more efficient and resilient DC operations in the future.

Suggested Citation

  • Wang, Ningbo & Guo, Yanhua & Huang, Congqi & Tian, Bo & Shao, Shuangquan, 2025. "Multi-scale collaborative modeling and deep learning-based thermal prediction for air-cooled data centers: An innovative insight for thermal management," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019512
    DOI: 10.1016/j.apenergy.2024.124568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ningbo & Guo, Yanhua & Liu, Lu & Shao, Shuangquan, 2024. "Numerical assessment and optimization of photovoltaic-based hydrogen-oxygen Co-production energy system: A machine learning and multi-objective strategy," Renewable Energy, Elsevier, vol. 227(C).
    2. Li, Wei & Li, Yongsheng & Garg, Akhil & Gao, Liang, 2024. "Enhancing real-time degradation prediction of lithium-ion battery: A digital twin framework with CNN-LSTM-attention model," Energy, Elsevier, vol. 286(C).
    3. Yang, Qingqing & Li, Jianwei & Cao, Wanke & Li, Shuangqi & Lin, Jie & Huo, Da & He, Hongwen, 2020. "An improved vehicle to the grid method with battery longevity management in a microgrid application," Energy, Elsevier, vol. 198(C).
    4. Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
    5. Tradat, Mohammad I. & Manaserh, Yaman “Mohammad Ali” & Sammakia, Bahgat G. & Hoang, Cong Hiep & Alissa, Husam A., 2021. "An experimental and numerical investigation of novel solution for energy management enhancement in data centers using underfloor plenum porous obstructions," Applied Energy, Elsevier, vol. 289(C).
    6. Silva-Llanca, Luis & Ortega, Alfonso & Fouladi, Kamran & del Valle, Marcelo & Sundaralingam, Vikneshan, 2018. "Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction," Applied Energy, Elsevier, vol. 213(C), pages 235-246.
    7. Lee, Yee-Ting & Wen, Chih-Yung & Shih, Yang-Cheng & Li, Zhengtong & Yang, An-Shik, 2022. "Numerical and experimental investigations on thermal management for data center with cold aisle containment configuration," Applied Energy, Elsevier, vol. 307(C).
    8. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    9. Zhang, Qingang & Zeng, Wei & Lin, Qinjie & Chng, Chin-Boon & Chui, Chee-Kong & Lee, Poh-Seng, 2023. "Deep reinforcement learning towards real-world dynamic thermal management of data centers," Applied Energy, Elsevier, vol. 333(C).
    10. Cho, Jinkyun & Kim, Youngmo, 2021. "Development of modular air containment system: Thermal performance optimization of row-based cooling for high-density data centers," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Li & Congzhe Zhu & Xiuming Li & Bin Yang, 2025. "A Review of Non-Uniform Load Distribution and Solutions in Data Centers: Micro-Scale Liquid Cooling and Large-Scale Air Cooling," Energies, MDPI, vol. 18(1), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Li & Congzhe Zhu & Xiuming Li & Bin Yang, 2025. "A Review of Non-Uniform Load Distribution and Solutions in Data Centers: Micro-Scale Liquid Cooling and Large-Scale Air Cooling," Energies, MDPI, vol. 18(1), pages 1-22, January.
    2. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    3. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    4. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    5. Cho, Jinkyun & Lim, Seung-beom, 2023. "Balanced comparative assessment of thermal performance and energy efficiency for three cooling solutions in data centers," Energy, Elsevier, vol. 285(C).
    6. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).
    7. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    8. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    9. Zhang, Qiaoxin & Tu, Rang & Yang, Xu, 2024. "Optimization operation of data Center's distributed air conditioning system based on supply-demand matching," Energy, Elsevier, vol. 306(C).
    10. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    11. Guarino, Antonio & Trinchero, Riccardo & Canavero, Flavio & Spagnuolo, Giovanni, 2022. "A fast fuel cell parametric identification approach based on machine learning inverse models," Energy, Elsevier, vol. 239(PC).
    12. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network," Energy, Elsevier, vol. 295(C).
    13. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    14. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    15. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    16. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    17. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    18. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    19. Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).
    20. Han, Zongwei & Wei, Haotian & Sun, Xiaoqing & Bai, Chenguang & Xue, Da & Li, Xiuming, 2020. "Study on influence of operating parameters of data center air conditioning system based on the concept of on-demand cooling," Renewable Energy, Elsevier, vol. 160(C), pages 99-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.