IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018233.html
   My bibliography  Save this article

Power generation-cooling water Nexus: Impacts of cooling water shortage on power system operation - a simulation case study in Illinois, U.S

Author

Listed:
  • Wang, Ying
  • Zhou, Zhi
  • Betrie, Getnet
  • Zhang, Kaifeng
  • Yan, Eugene

Abstract

Cooling water shortage, frequently attributed to drought and heat waves, poses a significant threat to the operations of thermoelectric power plants and further poses a challenge for the entire power system and environmental stakeholders. Recognizing the critical nexus between power generation and cooling water availability and the potential ability of power generations to adjust generation schedules during cooling water shortages, this paper introduces a security-constrained unit commitment and economic dispatch model considering water-energy nexus. In specific, the model is augmented with a unit-level cooling water requirement (CWR) model and multi-level cooling water availability (CWA) constraints. The unit-level CWR model quantifies the cooling water withdrawal per MWh of power generation, taking into account factors such as thermoelectric generation technologies, cooling system technologies, and environmental parameters. The multi-level CWA constraints incorporate pump-level, plant-level, watershed-level, and forced minimum power constraints, utilizing data derived from actual-based cooling water shortage scenarios. Using a simulation case study in Illinois, United States, this research examines the reliability, economic, and environmental implications of cooling water shortages on power system operations. The results show that Illinois may experience 10–15% daily load curtailment and severe congestion between certain regions from the east to central during cooling water shortages, while once-through and wet-tower units experience a 52% and 17% reduction in power generation. Overall cooling water withdrawal decreases by 24–38% as severity intensifies.

Suggested Citation

  • Wang, Ying & Zhou, Zhi & Betrie, Getnet & Zhang, Kaifeng & Yan, Eugene, 2025. "Power generation-cooling water Nexus: Impacts of cooling water shortage on power system operation - a simulation case study in Illinois, U.S," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018233
    DOI: 10.1016/j.apenergy.2024.124440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamal Mamkhezri and Gregory L. Torell, 2022. "Assessing the Impact of Exceptional Drought on Emissions and Electricity Generation: The Case of Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    2. Li, Mingquan & Dai, Hancheng & Xie, Yang & Tao, Ye & Bregnbaek, Lars & Sandholt, Kaare, 2017. "Water conservation from power generation in China: A provincial level scenario towards 2030," Applied Energy, Elsevier, vol. 208(C), pages 580-591.
    3. Salazar, Juan M. & Diwekar, Urmila & Constantinescu, Emil & Zavala, Victor M., 2013. "Stochastic optimization approach to water management in cooling-constrained power plants," Applied Energy, Elsevier, vol. 112(C), pages 12-22.
    4. Lubega, William Naggaga & Stillwell, Ashlynn S., 2018. "Maintaining electric grid reliability under hydrologic drought and heat wave conditions," Applied Energy, Elsevier, vol. 210(C), pages 538-549.
    5. Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
    6. Shuai, Hang & Li, Fangxing & Zhu, Jinxiang & Tingen II, William Jerome & Mukherjee, Srijib, 2024. "Modeling the impact of extreme summer drought on conventional and renewable generation capacity: Methods and a case study on the Eastern U.S. power system," Applied Energy, Elsevier, vol. 363(C).
    7. Alexander Golub & Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2022. "Climate Change and the Vulnerability of Germany’s Power Sector to Heat and Drought," The Energy Journal, , vol. 43(3), pages 1-1, May.
    8. Alexander Golub & Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2022. "Climate Change and the Vulnerability of Germany’s Power Sector to Heat and Drought," The Energy Journal, , vol. 43(3), pages 157-184, May.
    9. Edward A. Byers & Gemma Coxon & Jim Freer & Jim W. Hall, 2020. "Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    10. Jamal Mamkhezri & Gregory L. Torell, 2022. "Assessing the Impact of Exceptional Drought on Emissions and Electricity Generation: The Case of Texas," The Energy Journal, , vol. 43(4), pages 159-178, May.
    11. Zohrabian, Angineh & Sanders, Kelly T., 2018. "Assessing the impact of drought on the emissions- and water-intensity of California's transitioning power sector," Energy Policy, Elsevier, vol. 123(C), pages 461-470.
    12. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    13. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    14. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    15. Alexander Golub, Kristina Govorukha, Philip Mayer, and Dirk Rübbelke, 2022. "Climate Change and the Vulnerability of Germany's Power Sector to Heat and Drought," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    2. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    3. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    4. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    5. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    6. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    7. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    8. Obringer, R. & Kumar, R. & Nateghi, R., 2019. "Analyzing the climate sensitivity of the coupled water-electricity demand nexus in the Midwestern United States," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    10. Huan-Feng Duan & Xichao Gao, 2019. "Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3523-3545, August.
    11. Wang, Huan & Liao, Shengli & Liu, Benxi & Zhao, Hongye & Ma, Xiangyu & Zhou, Binbin, 2024. "Long-term complementary scheduling model of hydro-wind-solar under extreme drought weather conditions using an improved time-varying hedging rule," Energy, Elsevier, vol. 305(C).
    12. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    13. Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
    14. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    15. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott, 2018. "Assessing future water resource constraints on thermally based renewable energy resources in California," Applied Energy, Elsevier, vol. 226(C), pages 49-60.
    16. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    17. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    18. Pavičević, Matija & De Felice, Matteo & Busch, Sebastian & Hidalgo González, Ignacio & Quoilin, Sylvain, 2021. "Water-energy nexus in African power pools – The Dispa-SET Africa model," Energy, Elsevier, vol. 228(C).
    19. Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
    20. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.