IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-021-04392-7.html
   My bibliography  Save this article

Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine

Author

Listed:
  • Shanglei Chai

    (Shandong Normal University)

  • Zixuan Zhang

    (Shandong Normal University)

  • Zhen Zhang

    (Dalian University of Technology)

Abstract

With the national goal of “carbon peak by 2030 and carbon neutral by 2060 in China”, studies on carbon prices of China’s Emissions Trading System (ETS) pilots have shown growing interest in the related fields. Carbon price fluctuations reflect the scarcity of carbon resources, and accurate prediction can improve carbon asset management capabilities. Therefore, in order to clarify the dynamics of carbon markets and assign carbon emissions allocation rationally, we propose a hybrid feature-driven forecasting model with the framework of decomposition-reconstruction-prediction-ensemble. In this paper, the non-stationary, nonlinear and chaotic characteristics of carbon prices in China’s ETS pilots have been verified, and then the prediction model is built based on the tested features. Firstly, the original carbon price series are decomposed by Variational Mode Decomposition (VMD), and then reconstructed by Sample Entropy (SE). Next, Extreme Learning Machine (ELM) optimized by Particle Swarm Optimization (PSO) is conducted to predict the subsequences. Lastly, the forecasting series of every subseries are summed to obtain the final results. The empirical results based on carbon prices of China’s ETS pilots proved that the proposed model performs more efficiently than the current benchmark models. As carbon prices are expected to increase across all ETS during the post-COVID-19 recovery stage, the new prediction model will be useful for improving the guiding principles of the existing government policies including the likely introductions of Border Carbon Adjustment (BCA) in the EU and the US, and governing the large global public companies to deliver their “net zero” commitments.

Suggested Citation

  • Shanglei Chai & Zixuan Zhang & Zhen Zhang, 2025. "Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine," Annals of Operations Research, Springer, vol. 345(2), pages 809-830, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-021-04392-7
    DOI: 10.1007/s10479-021-04392-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04392-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04392-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-021-04392-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.