IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924015691.html
   My bibliography  Save this article

Extending intraday solar forecast horizons with deep generative models

Author

Listed:
  • Carpentieri, A.
  • Folini, D.
  • Leinonen, J.
  • Meyer, A.

Abstract

Surface solar irradiance (SSI) plays a crucial role in tackling climate change — as an abundant, non-fossil energy source, exploited primarily via photovoltaic (PV) energy production. With the growing contribution of SSI to total energy production, the stability of the latter is challenged by the intermittent character of the former, arising primarily from cloud effects. Mitigating this stability challenge requires accurate, uncertainty-aware, near real-time, regional-scale SSI forecasts with lead times of minutes to a few hours, enabling robust real-time energy grid management. State-of-the-art nowcasting methods typically meet only some of these requirements. Here we present SHADECast, a deep generative diffusion model for the probabilistic spatiotemporal nowcasting of SSI, conditioned on deterministic aspects of cloud evolution to guide the probabilistic ensemble forecast, and based on near real-time satellite data. We demonstrate that SHADECast provides improved forecast quality, reliability, and accuracy in all weather scenarios. Our model produces realistic and spatiotemporally consistent predictions extending the state-of-the-art forecast horizon by 26 min over different regions with lead times of 15-120 min. Our physics-informed generative approach leads to up to 60% performance improvement in extreme value prediction over the state-of-the-art deterministic models, showcasing the advantage of probabilistic modeling of cloudiness over the classical deterministic approach. It also surpasses the probabilistic benchmarks in predicting extreme values. Finally, SHADECast empowers grid operators and energy traders to make informed decisions, ensuring stability and facilitating the seamless integration of PV energy across multiple locations simultaneously.

Suggested Citation

  • Carpentieri, A. & Folini, D. & Leinonen, J. & Meyer, A., 2025. "Extending intraday solar forecast horizons with deep generative models," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924015691
    DOI: 10.1016/j.apenergy.2024.124186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924015691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.