IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923010395.html
   My bibliography  Save this article

Temporal performance indicators for an integrated pilot-scale membrane distillation-concentrated solar power/photovoltaic system

Author

Listed:
  • Inkawhich, Mikah
  • Shingler, Jeb
  • Ketchum, Remington S.
  • Pan, Wei
  • Norwood, Robert A.
  • Hickenbottom, Kerri L.

Abstract

Management of concentrate streams in inland applications has uncertain long-term environmental impacts. This study investigates an intensified solar-energy capture desalination system that integrates membrane distillation (MD) with a hybrid concentrated solar power (CSP)/photovoltaic (PV) collector to realize self-sustained zero-waste discharge for effective management of concentrate streams in inland and off-grid applications. The demonstration-scale CSP/PV system can produce up to 178 kWh of thermal energy and 4 kWh of electrical energy per day. The thermal and electrical energy from the CSP/PV system is directly supplied to the air gap MD (AGMD) pilot-scale system producing up to 288 L of distilled water per day. Experiments were performed on the hybrid AGMD-CSP/PV system to evaluate system performance under various operating conditions including AGMD and CSP flow rates, CSP system pre-heating, and AGMD vacuum pressure. Experimental results indicate that doubling the AGMD flow rate results in a 119% increase in thermal energy utilization and a 71% increase in distillate production. Compared to the winter months, operating the system in summer months when direct normal irradiance (DNI) is highest results in nearly double the distillate production (88 L in winter and 168 L in summer) and nearly three times the amount of thermal energy consumption (15 kWh in winter and 43 kWh in summer). Operating with vacuum resulted in a 34% increase in distillate production and allowing the thermal storage reservoir to preheat in the winter resulted in a 61% increase in distillate production. Overall, experimental results highlight the tradeoff between distillate production and thermal and electrical energy production and consumption under various environmental conditions and the potential for AGMD-CSP/PV to be a stand-alone desalination system.

Suggested Citation

  • Inkawhich, Mikah & Shingler, Jeb & Ketchum, Remington S. & Pan, Wei & Norwood, Robert A. & Hickenbottom, Kerri L., 2023. "Temporal performance indicators for an integrated pilot-scale membrane distillation-concentrated solar power/photovoltaic system," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010395
    DOI: 10.1016/j.apenergy.2023.121675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    2. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    3. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    4. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    5. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    2. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    3. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    4. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    5. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    6. Pavlovic, Tomislav M. & Milosavljevic, Dragana D. & Mirjanic, Dragoljub & Pantic, Lana S. & Radonjic, Ivana S. & Pirsl, Danica, 2013. "Assessments and perspectives of PV solar power engineering in the Republic of Srpska (Bosnia and Herzegovina)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 119-133.
    7. Nogueira, Carlos Eduardo Camargo & Bedin, Janaína & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & das Neves, João Carlos Munhoz, 2015. "Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1610-1616.
    8. Sahoo, Sarat Kumar, 2016. "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 927-939.
    9. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    10. Li, Qiyuan & Omar, Amr & Cha-Umpong, Withita & Liu, Qian & Li, Xiaopeng & Wen, Jianping & Wang, Yinfeng & Razmjou, Amir & Guan, Jing & Taylor, Robert A., 2020. "The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment," Applied Energy, Elsevier, vol. 276(C).
    11. Arunkumar, T. & Lim, Hyeong Woo & Lee, Sang Joon, 2022. "A review on efficiently integrated passive distillation systems for active solar steam evaporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Qasem, Naef A.A. & Lawal, Dahiru U. & Aljundi, Isam H. & Abdallah, Ayman M. & Panchal, Hitesh, 2022. "Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system," Applied Energy, Elsevier, vol. 323(C).
    13. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    14. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    16. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    17. Al-Nimr, Moh'd.A. & Dawahdeh, Ahmad I., 2023. "A novel hybrid reverse osmosis and flash desalination system powered by solar photovoltaic/thermal collectors," Renewable Energy, Elsevier, vol. 218(C).
    18. Xiao, Gang & Zheng, Guanghua & Ni, Dong & Li, Qiang & Qiu, Min & Ni, Mingjiang, 2018. "Thermodynamic assessment of solar photon-enhanced thermionic conversion," Applied Energy, Elsevier, vol. 223(C), pages 134-145.
    19. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    20. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.