Learning to optimise wind farms with graph transformers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.122758
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Zhang, Jincheng & Zhao, Xiaowei, 2022. "Wind farm wake modeling based on deep convolutional conditional generative adversarial network," Energy, Elsevier, vol. 238(PB).
- Sedaghatizadeh, Nima & Arjomandi, Maziar & Kelso, Richard & Cazzolato, Benjamin & Ghayesh, Mergen H., 2018. "Modelling of wind turbine wake using large eddy simulation," Renewable Energy, Elsevier, vol. 115(C), pages 1166-1176.
- Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
- Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
- Park, Junyoung & Park, Jinkyoo, 2019. "Physics-induced graph neural network: An application to wind-farm power estimation," Energy, Elsevier, vol. 187(C).
- Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
- Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
- Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
- Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
- Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
- Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
- Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
- Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
- Guillem Armengol Barcos & Fernando Porté-Agel, 2023. "Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments," Energies, MDPI, vol. 17(1), pages 1-20, December.
- Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
- Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
- Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
- Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
- Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
- Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).
More about this item
Keywords
Deep learning; Transformers; Graph neural networks; Genetic algorithms; Wind farm power; Wake steering optimisation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001417. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.