IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924014697.html
   My bibliography  Save this article

Remaining discharge energy prediction for lithium-ion batteries over broad current ranges: A machine learning approach

Author

Listed:
  • Tu, Hao
  • Borah, Manashita
  • Moura, Scott
  • Wang, Yebin
  • Fang, Huazhen

Abstract

Lithium-ion batteries have found their way into myriad sectors of industry to drive electrification, decarbonization, and sustainability. A crucial aspect in ensuring their safe and optimal performance is monitoring their energy levels. In this paper, we present the first study on predicting the remaining energy of a battery cell undergoing discharge over wide current ranges from low to high C-rates. The complexity of the challenge arises from the cell’s C-rate-dependent energy availability as well as its intricate electro-thermal dynamics especially at high C-rates. To address this, we introduce a new definition of remaining discharge energy and then undertake a systematic effort in harnessing the power of machine learning to enable its prediction. Our effort includes two parts in cascade. First, we develop an accurate dynamic model based on integration of physics with machine learning to capture a battery’s voltage and temperature behaviors. Second, based on the model, we propose a machine learning approach to predict the remaining discharge energy under arbitrary C-rates and pre-specified cut-off limits in voltage and temperature. The experimental validation shows that the proposed approach can predict the remaining discharge energy with a relative error of less than 3% when the current varies between 0∼8 C for an NCA cell and 0∼15 C for an LFP cell. The approach, by design, is amenable to training and computation.

Suggested Citation

  • Tu, Hao & Borah, Manashita & Moura, Scott & Wang, Yebin & Fang, Huazhen, 2024. "Remaining discharge energy prediction for lithium-ion batteries over broad current ranges: A machine learning approach," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014697
    DOI: 10.1016/j.apenergy.2024.124086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.