IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019352.html
   My bibliography  Save this article

A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects

Author

Listed:
  • Ruan, Guanqiang
  • Liu, Zixi
  • Cheng, Jinrun
  • Hu, Xing
  • Chen, Song
  • Liu, Shiwen
  • Guo, Yong
  • Yang, Kuo

Abstract

The state of energy (SOE) is one of the most critical state indicators in battery management systems. However, its nonlinear characteristics present significant challenges in obtaining accurate SOE. Especially when applying different magnetic field strengths to perform battery charging and discharging tests, the change in battery energy becomes more complex due to the influence of the magnetization effect. In this paper, a deep learning network, combining an improved Informer and long short-term memory network (LSTM), was developed to estimate the SOE of lithium-ion batteries under different magnetic fields. First, we improve the decoder structure by adding a convolutional module using residual connections with trainable weight parameters to capture hidden states with more details.The improved decoder does not require label history information for decoding, which improves the generalization ability of the model. Finally, the output of the Informer network is a higher-dimensional hidden feature that is input into the LSTM network layer to output the SOE prediction value, which improves the original Informer network's ability to integrate sequences. Experiments with magnetic field and public datasets show the improved Informer-LSTM network achieves 0.31 % MAE, 0.42 % RMSE, and 1.79 % maximum error in SOE estimation, outperforming others in short sequence predictions.

Suggested Citation

  • Ruan, Guanqiang & Liu, Zixi & Cheng, Jinrun & Hu, Xing & Chen, Song & Liu, Shiwen & Guo, Yong & Yang, Kuo, 2024. "A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019352
    DOI: 10.1016/j.energy.2024.132161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.