IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics030626192201546x.html
   My bibliography  Save this article

Integrating physics-based modeling with machine learning for lithium-ion batteries

Author

Listed:
  • Tu, Hao
  • Moura, Scott
  • Wang, Yebin
  • Fang, Huazhen

Abstract

Mathematical modeling of lithium-ion batteries (LiBs) is a primary challenge in advanced battery management. This paper proposes two new frameworks to integrate physics-based models with machine learning to achieve high-precision modeling for LiBs. The frameworks are characterized by informing the machine learning model of the state information of the physical model, enabling a deep integration between physics and machine learning. Based on the frameworks, a series of hybrid models are constructed, through combining an electrochemical model and an equivalent circuit model, respectively, with a feedforward neural network. The hybrid models are relatively parsimonious in structure and can provide considerable voltage predictive accuracy under a broad range of C-rates, as shown by extensive simulations and experiments. The study further expands to conduct aging-aware hybrid modeling, leading to the design of a hybrid model conscious of the state-of-health to make prediction. The experiments show that the model has high voltage predictive accuracy throughout a LiB’s cycle life.

Suggested Citation

  • Tu, Hao & Moura, Scott & Wang, Yebin & Fang, Huazhen, 2023. "Integrating physics-based modeling with machine learning for lithium-ion batteries," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s030626192201546x
    DOI: 10.1016/j.apenergy.2022.120289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201546X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanim, Tanvir R. & Rahn, Christopher D. & Wang, Chao-Yang, 2015. "State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model," Energy, Elsevier, vol. 80(C), pages 731-739.
    2. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    3. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    4. Tang, Xiaopeng & Zou, Changfu & Yao, Ke & Lu, Jingyi & Xia, Yongxiao & Gao, Furong, 2019. "Aging trajectory prediction for lithium-ion batteries via model migration and Bayesian Monte Carlo method," Applied Energy, Elsevier, vol. 254(C).
    5. Mousavi G., S.M. & Nikdel, M., 2014. "Various battery models for various simulation studies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 477-485.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biju, Nikhil & Fang, Huazhen, 2023. "BattX: An equivalent circuit model for lithium-ion batteries over broad current ranges," Applied Energy, Elsevier, vol. 339(C).
    2. Khosravi, Nima & Dowlatabadi, Masrour & Abdelghany, Muhammad Bakr & Tostado-Véliz, Marcos & Jurado, Francisco, 2024. "Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biju, Nikhil & Fang, Huazhen, 2023. "BattX: An equivalent circuit model for lithium-ion batteries over broad current ranges," Applied Energy, Elsevier, vol. 339(C).
    2. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    3. Rahman, Ashikur & Lin, Xianke, 2022. "Li-ion battery individual electrode state of charge and degradation monitoring using battery casing through auto curve matching for standard CCCV charging profile," Applied Energy, Elsevier, vol. 321(C).
    4. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    5. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.
    6. Ashikur Rahman & Xianke Lin & Chongming Wang, 2022. "Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer," Energies, MDPI, vol. 15(15), pages 1-19, August.
    7. Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
    8. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    10. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
    11. Adrian Chmielewski & Piotr Piórkowski & Krzysztof Bogdziński & Jakub Możaryn, 2023. "Application of a Bidirectional DC/DC Converter to Control the Power Distribution in the Battery–Ultracapacitor System," Energies, MDPI, vol. 16(9), pages 1-40, April.
    12. Wang, Yujie & Chen, Zonghai & Zhang, Chenbin, 2017. "On-line remaining energy prediction: A case study in embedded battery management system," Applied Energy, Elsevier, vol. 194(C), pages 688-695.
    13. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
    14. Wang, Limei & Jin, Mengjie & Cai, Yingfeng & Lian, Yubo & Zhao, Xiuliang & Wang, Ruochen & Qiao, Sibing & Chen, Long & Yan, Xueqing, 2023. "Construction of electrochemical model for high C-rate conditions in lithium-ion battery based on experimental analogy method," Energy, Elsevier, vol. 279(C).
    15. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    16. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    17. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    18. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    19. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    20. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s030626192201546x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.