IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp2426-2434.html
   My bibliography  Save this article

A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning

Author

Listed:
  • Wang, Gang
  • Jia, Ru
  • Liu, Jinhai
  • Zhang, Huaguang

Abstract

In this paper, a hybrid wind power forecasting approach based on Bayesian model averaging and Ensemble learning (BMA-EL) is proposed. Firstly, SOM clustering and K-fold cross-validation are used to generate multiple sets of the training subsets with the same distribution from the training set of meteorological data to increase the difference of the input samples of the base learners. These training subsets are imported into three base learners, i.e. BPNN, RBFNN, and SVM, to train the model. Then, the BMA combining strategy is trained based on the outputs of the three base learners on the validation set. Finally, the test set is combined by the BMA through the outputs of the three base learners to obtain the WPF results. By comparing the simulation error and curve between the base learner and other literature approaches, our proposed method can accurately and reliably forecast the wind power outputs under different meteorological conditions, with higher precision and reliability.

Suggested Citation

  • Wang, Gang & Jia, Ru & Liu, Jinhai & Zhang, Huaguang, 2020. "A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning," Renewable Energy, Elsevier, vol. 145(C), pages 2426-2434.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2426-2434
    DOI: 10.1016/j.renene.2019.07.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2426-2434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.