IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v374y2024ics0306261924013801.html
   My bibliography  Save this article

Distributed state estimation-based resilient controller design for IoT-enabled microgrids under deception attacks

Author

Listed:
  • Ponnarasi, L.
  • Pankajavalli, P.B.
  • Lim, Yongdo
  • Sakthivel, R.

Abstract

This paper addresses the distributed state estimation-based centralized control design problem for Internet-of-Things (IoT)-enabled microgrid systems in the presence of deception attacks. Firstly, a microgrid with multiple synchronous generators is described in a state-space model. Furthermore, the states of the microgrid power system are monitored by using a set of sensors linked through IoT-enabled networks, where attacks are presumed to occur during measurements. In particular, the deception attacks are capable of compromising grid security through the malicious manipulation of measurement data. To tolerate this effect in this paper a resilient distributed state estimation design based control algorithm is developed. The microgrid system is then controlled by a centralized scheme that uses only estimates generated by a certain group of IoT-enabled networked nodes. Subsequently, an augmented system is developed that incorporates both the microgrid system and the estimator error dynamics. Using Lyapunov stability theory and matrix inequality approach, the proposed local and neighboring estimator based control gains are designed to ensure the accurate estimation of load and energy source output and continuous power supply. Specifically, the particle swarm optimization algorithm is used for optimizing the distributed state estimation-based controller to achieve the desired performance. Finally, simulation results demonstrate that the developed algorithm is capable of estimating the state of the microgrid and controlling its operations. The result reveals that microgrids can provide a constant flow of electricity while being resistant to deception attacks and disruptions caused by the networks.

Suggested Citation

  • Ponnarasi, L. & Pankajavalli, P.B. & Lim, Yongdo & Sakthivel, R., 2024. "Distributed state estimation-based resilient controller design for IoT-enabled microgrids under deception attacks," Applied Energy, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013801
    DOI: 10.1016/j.apenergy.2024.123997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Qishui & Han, Sheng & Shi, Kaibo & Zhong, Shouming & Cai, Xiao & Kwon, Oh-Min, 2022. "Distributed secure sampled-data control for distributed generators and energy storage systems in microgrids under abnormal deception attacks," Applied Energy, Elsevier, vol. 326(C).
    2. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    3. Tan, Sen & Xie, Peilin & Guerrero, Josep M. & Vasquez, Juan C., 2022. "False Data Injection Cyber-Attacks Detection for Multiple DC Microgrid Clusters," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    2. Zhao, Zhenghui & Shang, Yingying & Qi, Buyang & Wang, Yang & Sun, Yubo & Zhang, Qian, 2024. "Research on defense strategies for power system frequency stability under false data injection attacks," Applied Energy, Elsevier, vol. 371(C).
    3. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    4. Li, Xueping & Wang, Yaokun & Lu, Zhigang, 2023. "Graph-based detection for false data injection attacks in power grid," Energy, Elsevier, vol. 263(PC).
    5. Tabassum, Tambiara & Toker, Onur & Khalghani, Mohammad Reza, 2024. "Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network," Applied Energy, Elsevier, vol. 355(C).
    6. Amir Basati & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Saeed Golestan, 2022. "A Data-Driven Framework for FDI Attack Detection and Mitigation in DC Microgrids," Energies, MDPI, vol. 15(22), pages 1-17, November.
    7. Margossian, Harag & Kfouri, Ronald & Saliba, Rita, 2023. "Measurement protection to prevent cyber–physical attacks against power system State Estimation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    8. Xu, Junjun & Wu, Zaijun & Zhang, Tengfei & Hu, Qinran & Wu, Qiuwei, 2022. "A secure forecasting-aided state estimation framework for power distribution systems against false data injection attacks," Applied Energy, Elsevier, vol. 328(C).
    9. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    10. Tostado-Véliz, Marcos & Hasanien, Hany M. & Rezaee Jordehi, Ahmad & Turky, Rania A. & Gómez-González, Manuel & Jurado, Francisco, 2023. "An Interval-based privacy – Aware optimization framework for electricity price setting in isolated microgrid clusters," Applied Energy, Elsevier, vol. 340(C).
    11. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    12. Wenpei Li & Han Fu & Shun Wu & Bin Yang & Zhixiong Liu, 2023. "RETRACTED: A Kalman Filter-Based Distributed Cyber-Attack Mitigation Strategy for Distributed Generator Units in Meshed DC Microgrids," Energies, MDPI, vol. 16(24), pages 1-20, December.
    13. Mahvash, Hossein & Taher, Seyed Abbas & Guerrero, Josep M., 2024. "Mitigation of severe false data injection attacks (FDIAs) in marine current turbine (MCT) type 4 synchronous generator renewable energy using promoted backstepping method," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.