IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261921016548.html
   My bibliography  Save this article

False Data Injection Cyber-Attacks Detection for Multiple DC Microgrid Clusters

Author

Listed:
  • Tan, Sen
  • Xie, Peilin
  • Guerrero, Josep M.
  • Vasquez, Juan C.

Abstract

DC microgrids are considered as the next generation of power systems because of the possibility of connecting various renewable energy sources to different types of loads based on distributed networks. However, due to the strong reliance on communication networks, DC microgrids are vulnerable to intentional cyber-attacks. Therefore, in this paper, a robust cyber-attack detection scheme is proposed for DC microgrid systems. Utilizing the parity-based method, a multi-objective optimization problem is formulated to achieve robust detection against electrical parameter perturbations and unknown disturbances. An analytical solution is then provided using the singular value decomposition approach. With the disturbance decoupling scheme, the presented detection strategy can monitor the system with only local knowledge of the DC microgrid. The proposed method is easy to design and with less computation complexity. The performances of the provided scheme are validated by simulation tests and experimental results.

Suggested Citation

  • Tan, Sen & Xie, Peilin & Guerrero, Josep M. & Vasquez, Juan C., 2022. "False Data Injection Cyber-Attacks Detection for Multiple DC Microgrid Clusters," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016548
    DOI: 10.1016/j.apenergy.2021.118425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Junjun & Wu, Zaijun & Zhang, Tengfei & Hu, Qinran & Wu, Qiuwei, 2022. "A secure forecasting-aided state estimation framework for power distribution systems against false data injection attacks," Applied Energy, Elsevier, vol. 328(C).
    2. Wenpei Li & Han Fu & Shun Wu & Bin Yang & Zhixiong Liu, 2023. "RETRACTED: A Kalman Filter-Based Distributed Cyber-Attack Mitigation Strategy for Distributed Generator Units in Meshed DC Microgrids," Energies, MDPI, vol. 16(24), pages 1-20, December.
    3. Tostado-Véliz, Marcos & Hasanien, Hany M. & Rezaee Jordehi, Ahmad & Turky, Rania A. & Gómez-González, Manuel & Jurado, Francisco, 2023. "An Interval-based privacy – Aware optimization framework for electricity price setting in isolated microgrid clusters," Applied Energy, Elsevier, vol. 340(C).
    4. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    5. Margossian, Harag & Kfouri, Ronald & Saliba, Rita, 2023. "Measurement protection to prevent cyber–physical attacks against power system State Estimation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    6. Ponnarasi, L. & Pankajavalli, P.B. & Lim, Yongdo & Sakthivel, R., 2024. "Distributed state estimation-based resilient controller design for IoT-enabled microgrids under deception attacks," Applied Energy, Elsevier, vol. 374(C).
    7. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    8. Tabassum, Tambiara & Toker, Onur & Khalghani, Mohammad Reza, 2024. "Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network," Applied Energy, Elsevier, vol. 355(C).
    9. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    10. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    11. Amir Basati & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Saeed Golestan, 2022. "A Data-Driven Framework for FDI Attack Detection and Mitigation in DC Microgrids," Energies, MDPI, vol. 15(22), pages 1-17, November.
    12. Li, Xueping & Wang, Yaokun & Lu, Zhigang, 2023. "Graph-based detection for false data injection attacks in power grid," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.