IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v43y2023ics1874548223000562.html
   My bibliography  Save this article

Measurement protection to prevent cyber–physical attacks against power system State Estimation

Author

Listed:
  • Margossian, Harag
  • Kfouri, Ronald
  • Saliba, Rita

Abstract

Smart applications supporting modern power systems are susceptible to cyber–physical attacks, particularly False Data Injection attacks that manipulate the input measurements of State Estimation (SE) compromising its output states. This paper proposes an Integer Linear Programming formulation that protects an optimal number of measurement units to prevent cyber–physical attacks, enhancing the robustness of SE. Our approach exhibits low complexity, applies to both linear and nonlinear SE, and converges rapidly toward the optimal solution. The formulation requires information about the grid topology and measurement distribution but does not depend on the power flow equations. Also, the generalized formulation can be customized to consider distinct protection costs for all measurement types, various priorities for different measurements, and a range of measurements and pseudo-measurements. Simulations are performed on the widely used IEEE 14 and 118-bus systems to verify the approach for linear and nonlinear SE and illustrate its practicality.

Suggested Citation

  • Margossian, Harag & Kfouri, Ronald & Saliba, Rita, 2023. "Measurement protection to prevent cyber–physical attacks against power system State Estimation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
  • Handle: RePEc:eee:ijocip:v:43:y:2023:i:c:s1874548223000562
    DOI: 10.1016/j.ijcip.2023.100643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548223000562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2023.100643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Fiaz & Rasool, Akhtar & Ozsoy, Emre & Sekar, Raja & Sabanovic, Asif & Elitaş, Meltem, 2018. "Distribution system state estimation-A step towards smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2659-2671.
    2. Khazaei, Javad & Amini, M. Hadi, 2021. "Protection of large-scale smart grids against false data injection cyberattacks leading to blackouts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    3. Majidi, Seyed Hossein & Hadayeghparast, Shahrzad & Karimipour, Hadis, 2022. "FDI attack detection using extra trees algorithm and deep learning algorithm-autoencoder in smart grid," International Journal of Critical Infrastructure Protection, Elsevier, vol. 37(C).
    4. Tan, Sen & Xie, Peilin & Guerrero, Josep M. & Vasquez, Juan C., 2022. "False Data Injection Cyber-Attacks Detection for Multiple DC Microgrid Clusters," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    2. Karthikeyan Nainar & Florin Iov, 2020. "Smart Meter Measurement-Based State Estimation for Monitoring of Low-Voltage Distribution Grids," Energies, MDPI, vol. 13(20), pages 1-18, October.
    3. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    4. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    5. Israa T. Aziz & Hai Jin & Ihsan H. Abdulqadder & Sabah M. Alturfi & Wisam H. Alobaidi & Firas M.F. Flaih, 2019. "T 2 S 2 G: A Novel Two-Tier Secure Smart Grid Architecture to Protect Network Measurements," Energies, MDPI, vol. 12(13), pages 1-24, July.
    6. István Táczi & Bálint Sinkovics & István Vokony & Bálint Hartmann, 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review," Energies, MDPI, vol. 14(17), pages 1-17, August.
    7. Aqdas Naz & Nadeem Javaid & Muhammad Babar Rasheed & Abdul Haseeb & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Game Theoretical Energy Management with Storage Capacity Optimization and Photo-Voltaic Cell Generated Power Forecasting in Micro Grid," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    8. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    9. Li, Xueping & Wang, Yaokun & Lu, Zhigang, 2023. "Graph-based detection for false data injection attacks in power grid," Energy, Elsevier, vol. 263(PC).
    10. Tabassum, Tambiara & Toker, Onur & Khalghani, Mohammad Reza, 2024. "Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network," Applied Energy, Elsevier, vol. 355(C).
    11. Fabio Napolitano & Juan Diego Rios Penaloza & Fabio Tossani & Alberto Borghetti & Carlo Alberto Nucci, 2021. "Three-Phase State Estimation of a Low-Voltage Distribution Network with Kalman Filter," Energies, MDPI, vol. 14(21), pages 1-19, November.
    12. Amir Basati & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Saeed Golestan, 2022. "A Data-Driven Framework for FDI Attack Detection and Mitigation in DC Microgrids," Energies, MDPI, vol. 15(22), pages 1-17, November.
    13. Xu, Junjun & Wu, Zaijun & Zhang, Tengfei & Hu, Qinran & Wu, Qiuwei, 2022. "A secure forecasting-aided state estimation framework for power distribution systems against false data injection attacks," Applied Energy, Elsevier, vol. 328(C).
    14. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    15. Guoli Feng & Zhihao Ye & Yihui Xia & Heng Nian & Liming Huang & Zerun Wang, 2022. "High Frequency Resonance Suppression Strategy of Three-Phase Four-Wire Split Capacitor Inverter Connected to Parallel Compensation Grid," Energies, MDPI, vol. 15(4), pages 1-20, February.
    16. Karthikeyan Nainar & Florin Iov, 2021. "Three-Phase State Estimation for Distribution-Grid Analytics," Clean Technol., MDPI, vol. 3(2), pages 1-14, May.
    17. Sepideh Radhoush & Trevor Vannoy & Kaveen Liyanage & Bradley M. Whitaker & Hashem Nehrir, 2023. "Distribution System State Estimation and False Data Injection Attack Detection with a Multi-Output Deep Neural Network," Energies, MDPI, vol. 16(5), pages 1-22, February.
    18. Tostado-Véliz, Marcos & Hasanien, Hany M. & Rezaee Jordehi, Ahmad & Turky, Rania A. & Gómez-González, Manuel & Jurado, Francisco, 2023. "An Interval-based privacy – Aware optimization framework for electricity price setting in isolated microgrid clusters," Applied Energy, Elsevier, vol. 340(C).
    19. Wang, Luping & Wei, Hui & Hao, Yun, 2023. "Vulnerable underground entrance understanding for visual surveillance systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    20. Guoli Feng & Zhihao Ye & Yihui Xia & Liming Huang & Zerun Wang, 2022. "Impedance Modeling and Stability Analysis of Three-Phase Four-Wire Inverter with Grid-Connected Operation," Energies, MDPI, vol. 15(8), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:43:y:2023:i:c:s1874548223000562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.