IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics030626192401105x.html
   My bibliography  Save this article

Efficiency and longevity trade-off analysis and real-time dynamic health state estimation of solid oxide fuel cell system

Author

Listed:
  • Qin, Hongchuan
  • Zhang, Bingtao
  • Zhou, Renjie
  • Sun, Yating
  • Tian, Haichuan
  • Wang, Zichen
  • Wu, Shijun
  • Li, Xi
  • Jiang, Jianhua

Abstract

Solid oxide fuel cell (SOFC) is a promising energy conversion technology due to its advantages of high efficiency, low emissions, and fuel adaptability. Addressing the balance between efficiency and longevity is crucial for their application on a large scale. Accurate estimation and prediction of the health state of SOFC systems is essential for the study of optimization between system efficiency and degradation. In this work, the influence law of degradation, the relationship between efficiency and longevity, and their joint optimization, alongside the state of health (SOH) estimation of the SOFC system have been deeply investigated, based on a rigorously validated model of a degraded SOFC system. First, the influential variables that predominantly influence system degradation are identified and analyzed via principal component analysis, including stack average temperature, stack temperature gradient, and fuel utilization. Then, the exploration of the trade-off relationship between system efficiency and longevity under all operating conditions is conducted, and the influence laws of influential variables on system degradation are revealed. In light of the lack of accuracy during load changes and the high time cost for existing SOH estimation methodologies, a novel improved SOH estimation strategy, considering both stack voltage and current-related states, is proposed for real-time estimation of system SOH under varying fuel compositions and dynamic power scenarios. The performance of the proposed method is demonstrated by comparing with existing methodologies. This comprehensive study lays the groundwork for the effective and sustainable health management of SOFC systems, ensuring their efficiency and longevity are maintained at an optimal balance.

Suggested Citation

  • Qin, Hongchuan & Zhang, Bingtao & Zhou, Renjie & Sun, Yating & Tian, Haichuan & Wang, Zichen & Wu, Shijun & Li, Xi & Jiang, Jianhua, 2024. "Efficiency and longevity trade-off analysis and real-time dynamic health state estimation of solid oxide fuel cell system," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s030626192401105x
    DOI: 10.1016/j.apenergy.2024.123722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401105X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallo, Marco & Costabile, Carmine & Sorrentino, Marco & Polverino, Pierpaolo & Pianese, Cesare, 2020. "Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems," Applied Energy, Elsevier, vol. 279(C).
    2. Zhong, Xiaobo & Xu, Yuanwu & Liu, Yanlin & Wu, Xiaolong & Zhao, Dongqi & Zheng, Yi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Root cause analysis and diagnosis of solid oxide fuel cell system oscillations based on data and topology-based model," Applied Energy, Elsevier, vol. 267(C).
    3. Wu, Xiao-long & Xu, Yuan-Wu & Xue, Tao & Zhao, Dong-qi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2019. "Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment," Applied Energy, Elsevier, vol. 248(C), pages 126-140.
    4. Jiang, Jianhua & Shen, Tan & Deng, Zhonghua & Fu, Xiaowei & Li, Jian & Li, Xi, 2018. "High efficiency thermoelectric cooperative control of a stand-alone solid oxide fuel cell system with an air bypass valve," Energy, Elsevier, vol. 152(C), pages 13-26.
    5. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & He, Wei & Farrusseng, David & Ni, Meng, 2018. "Modeling of all porous solid oxide fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 105-113.
    6. Liming Wei & Yixuan Wang, 2023. "Optimization of solid oxide fuel cell power generation voltage prediction based on improved neural network," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 464-472.
    7. Yang, JiaJun & Yan, Dong & Huang, Wei & Li, Jun & Pu, Jian & Chi, Bo & Jian, Li, 2018. "Improvement on durability and thermal cycle performance for solid oxide fuel cell stack with external manifold structure," Energy, Elsevier, vol. 149(C), pages 903-913.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    2. Yuanwu Xu & Hao Shu & Hongchuan Qin & Xiaolong Wu & Jingxuan Peng & Chang Jiang & Zhiping Xia & Yongan Wang & Xi Li, 2022. "Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter," Energies, MDPI, vol. 15(7), pages 1-17, March.
    3. Xiaowei Fu & Yanlin Liu & Xi Li, 2020. "Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven," Energies, MDPI, vol. 13(16), pages 1-13, August.
    4. Hongchuan Qin & Zhonghua Deng & Xi Li, 2022. "Cooperative Control of a Steam Reformer Solid Oxide Fuel Cell System for Stable Reformer Operation," Energies, MDPI, vol. 15(9), pages 1-14, May.
    5. Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
    6. Wu, Xiao-long & Xu, Yuan-wu & Zhao, Dong-qi & Zhong, Xiao-bo & Li, Dong & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system," Applied Energy, Elsevier, vol. 263(C).
    7. Zhong, Xiaobo & Xu, Yuanwu & Liu, Yanlin & Wu, Xiaolong & Zhao, Dongqi & Zheng, Yi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Root cause analysis and diagnosis of solid oxide fuel cell system oscillations based on data and topology-based model," Applied Energy, Elsevier, vol. 267(C).
    8. Mingfei Li & Zhengpeng Chen & Jiangbo Dong & Kai Xiong & Chuangting Chen & Mumin Rao & Zhiping Peng & Xi Li & Jingxuan Peng, 2022. "A Data-Driven Fault Diagnosis Method for Solid Oxide Fuel Cell Systems," Energies, MDPI, vol. 15(7), pages 1-16, March.
    9. Jingxuan Peng & Dongqi Zhao & Yuanwu Xu & Xiaolong Wu & Xi Li, 2023. "Comprehensive Analysis of Solid Oxide Fuel Cell Performance Degradation Mechanism, Prediction, and Optimization Studies," Energies, MDPI, vol. 16(2), pages 1-23, January.
    10. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    11. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    12. Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
    13. Santosh B. Rane & Sandesh Wavhal & Prathamesh R. Potdar, 2023. "Integration of Lean Six Sigma with Internet of Things (IoT) for productivity improvement: a case study of contactor manufacturing industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1990-2018, October.
    14. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    15. Gallo, Marco & Costabile, Carmine & Sorrentino, Marco & Polverino, Pierpaolo & Pianese, Cesare, 2020. "Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems," Applied Energy, Elsevier, vol. 279(C).
    16. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    17. Karim Nadim & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Data-driven dynamic causality analysis of industrial systems using interpretable machine learning and process mining," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 57-83, January.
    18. Chen, Xudong & Ji, Yutao & Yan, Dong & Jia, Lichao & Han, Xiaotao & Wu, Kaiming & Yang, Jiajun & Li, Jian, 2024. "Thermal stress and contact analysis utilizing tested temperature data in a kW-class external-manifold solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 370(C).
    19. Mumin Rao & Li Wang & Chuangting Chen & Kai Xiong & Mingfei Li & Zhengpeng Chen & Jiangbo Dong & Junli Xu & Xi Li, 2022. "Data-Driven State Prediction and Analysis of SOFC System Based on Deep Learning Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    20. Wang, Yang & Wu, Chengru & Zhao, Siyuan & Wang, Jian & Zu, Bingfeng & Han, Minfang & Du, Qing & Ni, Meng & Jiao, Kui, 2022. "Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s030626192401105x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.