IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4069-d395281.html
   My bibliography  Save this article

Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven

Author

Listed:
  • Xiaowei Fu

    (College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
    Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, China
    State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yanlin Liu

    (College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
    Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, China)

  • Xi Li

    (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

The solid oxide fuel cell (SOFC) is a new energy technology that has the advantages of low emissions and high efficiency. However, oscillation and propagation often occur during the power generation of the system, which causes system performance degradation and reduced service life. To determine the root cause of multi-loop oscillation in an SOFC system, a data-driven diagnostic method is proposed in this paper. In our method, kernel principal component analysis (KPCA) and transfer entropy were applied to the system oscillation fault location. First, based on the KPCA method and the Oscillation Significance Index (OSI) of the system process variable, the process variables that were most affected by the oscillations were selected. Then, transfer entropy was used to quantitatively analyze the causal relationship between the oscillation variables and the oscillation propagation path, which determined the root cause of the oscillation. Finally, Granger causality (GC) analysis was used to verify the correctness of our method. The experimental results show that the proposed method can accurately and effectively locate the root cause of the SOFC system’s oscillation.

Suggested Citation

  • Xiaowei Fu & Yanlin Liu & Xi Li, 2020. "Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven," Energies, MDPI, vol. 13(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4069-:d:395281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Yongxiu & Pang, Yuexia & Zhang, Qi & Jiao, Zhe & Chen, Qian, 2018. "Comprehensive evaluation of regional clean energy development levels based on principal component analysis and rough set theory," Renewable Energy, Elsevier, vol. 122(C), pages 643-653.
    2. He, Jiayi & Shang, Pengjian, 2017. "Comparison of transfer entropy methods for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 772-785.
    3. Zhong, Xiaobo & Xu, Yuanwu & Liu, Yanlin & Wu, Xiaolong & Zhao, Dongqi & Zheng, Yi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Root cause analysis and diagnosis of solid oxide fuel cell system oscillations based on data and topology-based model," Applied Energy, Elsevier, vol. 267(C).
    4. Xiaojun Song & Abderrahim Taamouti, 2019. "A Better Understanding of Granger Causality Analysis: A Big Data Environment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(4), pages 911-936, August.
    5. Wu, Xiao-long & Xu, Yuan-Wu & Xue, Tao & Zhao, Dong-qi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2019. "Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment," Applied Energy, Elsevier, vol. 248(C), pages 126-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingfei Li & Zhengpeng Chen & Jiangbo Dong & Kai Xiong & Chuangting Chen & Mumin Rao & Zhiping Peng & Xi Li & Jingxuan Peng, 2022. "A Data-Driven Fault Diagnosis Method for Solid Oxide Fuel Cell Systems," Energies, MDPI, vol. 15(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Xiaobo & Xu, Yuanwu & Liu, Yanlin & Wu, Xiaolong & Zhao, Dongqi & Zheng, Yi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Root cause analysis and diagnosis of solid oxide fuel cell system oscillations based on data and topology-based model," Applied Energy, Elsevier, vol. 267(C).
    2. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    3. Neto, José de Paula Neves & Figueiredo, Daniel Ratton, 2023. "Ranking influential and influenced stocks over time using transfer entropy networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Santosh B. Rane & Sandesh Wavhal & Prathamesh R. Potdar, 2023. "Integration of Lean Six Sigma with Internet of Things (IoT) for productivity improvement: a case study of contactor manufacturing industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1990-2018, October.
    5. Gallo, Marco & Costabile, Carmine & Sorrentino, Marco & Polverino, Pierpaolo & Pianese, Cesare, 2020. "Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems," Applied Energy, Elsevier, vol. 279(C).
    6. Adeyinka Adediran & Bola Babajide & Nataliia Osina, 2023. "Exploring the nexus between price and volume changes in the cryptocurrency market," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 498-512, October.
    7. Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
    8. Karim Nadim & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Data-driven dynamic causality analysis of industrial systems using interpretable machine learning and process mining," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 57-83, January.
    9. Zhang, Jinren & Cao, Jinde & Wu, Tao & Huang, Wei & Ma, Tao & Zhou, Xinye, 2023. "A novel adaptive multi-scale Rényi transfer entropy based on kernel density estimation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Lahmiri, Salim & Bekiros, Stelios & Bezzina, Frank, 2020. "Multi-fluctuation nonlinear patterns of European financial markets based on adaptive filtering with application to family business, green, Islamic, common stocks, and comparison with Bitcoin, NASDAQ, ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    11. Yuanwu Xu & Hao Shu & Hongchuan Qin & Xiaolong Wu & Jingxuan Peng & Chang Jiang & Zhiping Xia & Yongan Wang & Xi Li, 2022. "Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter," Energies, MDPI, vol. 15(7), pages 1-17, March.
    12. Mumin Rao & Li Wang & Chuangting Chen & Kai Xiong & Mingfei Li & Zhengpeng Chen & Jiangbo Dong & Junli Xu & Xi Li, 2022. "Data-Driven State Prediction and Analysis of SOFC System Based on Deep Learning Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    13. Wang, Yang & Wu, Chengru & Zhao, Siyuan & Wang, Jian & Zu, Bingfeng & Han, Minfang & Du, Qing & Ni, Meng & Jiao, Kui, 2022. "Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell," Applied Energy, Elsevier, vol. 315(C).
    14. Kuang, Peng-Cheng, 2021. "Measuring information flow among international stock markets: An approach of entropy-based networks on multi time-scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    15. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    16. Caferra, Rocco, 2022. "Sentiment spillover and price dynamics: Information flow in the cryptocurrency and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    17. Piasecki Adam & Pilarska Agnieszka & Golba Radosław, 2021. "The potential of data exploration methods in identifying the relationship between short-period (daily) water consumption and meteorological factors," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 54(54), pages 113-122, December.
    18. Yaping Wu & Xiaolong Wu & Yuanwu Xu & Yongjun Cheng & Xi Li, 2023. "A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    19. Iwanicz-Drozdowska, Małgorzata & Rogowicz, Karol, 2022. "Does the choice of monetary policy tool matter for systemic risk? The curious case of negative interest rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    20. Ji, Qiang & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2019. "Information interdependence among energy, cryptocurrency and major commodity markets," Energy Economics, Elsevier, vol. 81(C), pages 1042-1055.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4069-:d:395281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.