Deep learning application in fuel cell electric bicycle to optimize bicycle performance and energy consumption under the effect of key input parameters
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123588
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Minutillo, M. & Forcina, A. & Jannelli, N. & Lubrano Lavadera, A., 2018. "Assessment of a sustainable energy chain designed for promoting the hydrogen mobility by means of fuel-cell powered bicycles," Energy, Elsevier, vol. 153(C), pages 200-210.
- Jiang, Han & Xi, Zhongli & A. Rahman, Anas & Zhang, Xiaoqing, 2020. "Prediction of output power with artificial neural network using extended datasets for Stirling engines," Applied Energy, Elsevier, vol. 271(C).
- Kheirandish, Azadeh & Motlagh, Farid & Shafiabady, Niusha & Dahari, Mahidzal & Khairi Abdul Wahab, Ahmad, 2017. "Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system," Applied Energy, Elsevier, vol. 202(C), pages 20-31.
- Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
- Le Trong Hieu & Ock Taeck Lim, 2023. "Effects of the Structure and Operating Parameters on the Performance of an Electric Scooter," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
- João Tabanêz Patrício & Rui Amaral Lopes & Naim Majdalani & Daniel Aelenei & João Martins, 2023. "Aggregated Use of Energy Flexibility in Office Buildings," Energies, MDPI, vol. 16(2), pages 1-17, January.
- Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
- Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
- Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
- Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
- Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
- Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
- Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
- Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
- Dong, Fuxiang & Wang, Jiangjiang & Xu, Hangwei & Zhang, Xutao, 2024. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties," Energy, Elsevier, vol. 300(C).
- Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
- Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
- Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2020. "A least-squares support vector machine method for modeling transient voltage in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 271(C).
- Zhang, Xuan-Kai & He, Ya-Ling & Li, Meng-Jie & Hu, Xin, 2022. "The study of heat-mass transfer characteristics and multi-objective optimization on electric arc furnace," Applied Energy, Elsevier, vol. 317(C).
- Andrea Luigi Facci & Marco Lauricella & Sauro Succi & Vittorio Villani & Giacomo Falcucci, 2021. "Optimized Modeling and Design of a PCM-Enhanced H 2 Storage," Energies, MDPI, vol. 14(6), pages 1-13, March.
- Hesen Zuo & Wengang Zheng & Mingfei Wang & Xin Zhang, 2023. "Prediction of Heat and Cold Loads of Factory Mushroom Houses Based on EWT Decomposition," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
- Yang, Duo & Pan, Rui & Wang, Yujie & Chen, Zonghai, 2019. "Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control," Energy, Elsevier, vol. 188(C).
- Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
- Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
More about this item
Keywords
Fuel cell electric bicycle performance; PEM fuel cell; MATLAB-Simulink; Effective performance range; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009711. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.