IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v285y2021ics0306261920317840.html
   My bibliography  Save this article

Low calcium dosage favors methanation of long-chain fatty acids

Author

Listed:
  • Liu, Yang
  • He, Pinjing
  • Duan, Haowen
  • Shao, Liming
  • Lü, Fan

Abstract

Anaerobic digestion of fats, oils, and greases is a desirable approach to recover methane from wastewater and solid waste. However, the efficiency and stability are unsatisfying owing to the difficulty in long-chain fatty acids (LCFAs) methanation. To make matters worse, LCFAs easily form precipitate with Ca2+, which would further reduce the stability of anaerobic digestion. Therefore, to determine the optimal Ca2+ concentrations and investigate the mechanism that how Ca2+ affect the precipitate formation and LCFAs methanation, a series of batch reactors were established with different Ca2+ concentrations. The optimum Ca2+ concentration was proven to be 20 mg/L. It presented the fastest methane production rate and highest methane yield, which was increased by 67% than the control. Taken anaerobic digestion efficiency into account, it was nearly twice as efficient as other groups by producing about double net energy. Excessive Ca2+ (2500 mg/L) was the result of the formation of large amounts of precipitate composed of calcium phosphate (50 wt%), calcium carbonate (37 wt%), and Ca-LCFAs (13 wt%), which rendered LCFAs inaccessible and decreased the LCFA degradation rate. Further microscopic and elemental investigations revealed that Ca-LCFAs precipitate were barely formed at low Ca2+ concentrations, avoiding carbon source loss. The relative abundance and absolute amount of two syntrophic bacteria, Syntrophomonas spp. and Petrimonas spp., ensured rapid methanogenesis. Metagenome prediction confirmed promotion of two crucial enzymes involved in β-oxidation. In summary, these results indicated that low Ca2+ dosage of about 20 mg/L significantly favors LCFAs methanation.

Suggested Citation

  • Liu, Yang & He, Pinjing & Duan, Haowen & Shao, Liming & Lü, Fan, 2021. "Low calcium dosage favors methanation of long-chain fatty acids," Applied Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317840
    DOI: 10.1016/j.apenergy.2020.116421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920317840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jingxin & Mao, Liwei & Nithya, Karthikeyan & Loh, Kai-Chee & Dai, Yanjun & He, Yiliang & Wah Tong, Yen, 2019. "Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste," Applied Energy, Elsevier, vol. 249(C), pages 28-36.
    2. Yuan, Tian & Cheng, Yanfei & Zhang, Zhenya & Lei, Zhongfang & Shimizu, Kazuya, 2019. "Comparative study on hydrothermal treatment as pre- and post-treatment of anaerobic digestion of primary sludge: Focus on energy balance, resources transformation and sludge dewaterability," Applied Energy, Elsevier, vol. 239(C), pages 171-180.
    3. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    4. Lü, Fan & Liu, Yang & Shao, Liming & He, Pinjing, 2019. "Powdered biochar doubled microbial growth in anaerobic digestion of oil," Applied Energy, Elsevier, vol. 247(C), pages 605-614.
    5. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    6. Takuro Kobayashi & Hidetoshi Kuramochi & Kouji Maeda & Kaiqin Xu, 2016. "A Simple Method for the Detection of Long-Chain Fatty Acids in an Anaerobic Digestate Using a Quartz Crystal Sensor," Energies, MDPI, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xinxin & Han, Ruirui & Song, Chuang & Liu, Yanping, 2022. "Preparation of polyvinyl alcohol-calcium sustained-release agent employed to degrade long-chain fatty acids and improve the performance of anaerobic digestion of food waste," Renewable Energy, Elsevier, vol. 199(C), pages 653-661.
    2. Wang, Dong-Hui & Lian, Shu-Juan & Wang, Ruo-Nan & Zou, Hua & Guo, Rong-Bo & Fu, Shan-Fei, 2023. "Enhanced anaerobic digestion of food waste by metal cations and mechanisms analysis," Renewable Energy, Elsevier, vol. 218(C).
    3. Thakur, Nandini & Jalalah, Mohammed & Alsareii, Saeed A. & Harraz, Farid A. & Almadiy, Abdulrhman A. & Su, Shaochen & Salama, El-Sayed & Li, Xiangkai, 2024. "Anaerobic digestion of fat, oil, and grease (FOG) under combined additives: Enhanced digestibility, biogas production, and microbiome," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Wu, Kun & Xu, Weijia & Lu, Jian & Wang, Chun & Liao, Jinhui & He, Xia, 2022. "Saponification with calcium enhanced methane yield in anaerobic digestion of fat, oil, and grease: The essential role of calcium," Renewable Energy, Elsevier, vol. 195(C), pages 1103-1112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Luo & Youpei Qu & Weijia Gong & Liyuan Qin & Wenzhe Li & Yong Sun, 2021. "Effect of Particle Size on the Aerobic and Anaerobic Digestion Characteristics of Whole Rice Straw," Energies, MDPI, vol. 14(13), pages 1-15, July.
    2. Sun, Peng & Yun, Teng & Chen, Zhe, 2021. "Multi-objective robust optimization of multi-energy microgrid with waste treatment," Renewable Energy, Elsevier, vol. 178(C), pages 1198-1210.
    3. De Sanctis, M. & Chimienti, S. & Pastore, C. & Piergrossi, V. & Di Iaconi, C., 2019. "Energy efficiency improvement of thermal hydrolysis and anaerobic digestion of Posidonia oceanica residues," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Zhao, Ning & You, Fengqi, 2021. "Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns," Applied Energy, Elsevier, vol. 282(PA).
    5. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Foteini Sakaveli & Maria Petala & Vasilios Tsiridis & Efthymios Darakas, 2024. "Enhancing Methane Yield in Anaerobic Co-Digestion of Primary Sewage Sludge: A Comprehensive Review on Potential Additives and Strategies," Waste, MDPI, vol. 2(1), pages 1-29, January.
    7. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    8. Tan, Lea Chua & Lin, Richen & Murphy, Jerry D. & Lens, Piet N.L., 2021. "Granular activated carbon supplementation enhances anaerobic digestion of lipid-rich wastewaters," Renewable Energy, Elsevier, vol. 171(C), pages 958-970.
    9. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    10. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Zou, Shuzhen & Kang, Di, 2018. "Relationship between anaerobic digestion characteristics and biogas production under composting pretreatment," Renewable Energy, Elsevier, vol. 125(C), pages 485-494.
    13. Ormaechea, P. & Castrillón, L. & Suárez-Peña, B. & Megido, L. & Fernández-Nava, Y. & Negral, L. & Marañón, E. & Rodríguez-Iglesias, J., 2018. "Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM," Renewable Energy, Elsevier, vol. 126(C), pages 897-904.
    14. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.
    15. Thakur, Nandini & Jalalah, Mohammed & Alsareii, Saeed A. & Harraz, Farid A. & Almadiy, Abdulrhman A. & Su, Shaochen & Salama, El-Sayed & Li, Xiangkai, 2024. "Anaerobic digestion of fat, oil, and grease (FOG) under combined additives: Enhanced digestibility, biogas production, and microbiome," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Cristiane Romio & Michael Vedel Wegener Kofoed & Henrik Bjarne Møller, 2021. "Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    17. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    18. Wu, Benteng & Lin, Richen & Kang, Xihui & Deng, Chen & Dobson, Alan D.W. & Murphy, Jerry D., 2021. "Improved robustness of ex-situ biological methanation for electro-fuel production through the addition of graphene," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2019. "Improvement of energy recovery from the digestion of waste activated sludge (WAS) through intermediate treatments: The effect of the hydraulic retention time (HRT) of the first-stage digestion," Applied Energy, Elsevier, vol. 240(C), pages 191-204.
    20. Cudjoe, Dan & Nketiah, Emmanuel & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Zhu, Bangzhu, 2021. "Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi," Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.