IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924008067.html
   My bibliography  Save this article

Multi-objective optimization of cooling plate with hexagonal channel design for thermal management of Li-ion battery module

Author

Listed:
  • Monika, Kokkula
  • Punnoose, Emma Mariam
  • Datta, Santanu Prasad

Abstract

An optimization workflow combining Latin hypercube sampling (LHS), surrogate models and multi-objective optimization is explored and applied to augment the effectiveness of a hexagonal mini-channelled cooling plate proposed previously in mitigating the overheating issues of 20Ah pouch batteries. Three design parameters are selected and deliberately randomized to explore a range of geometric configurations that might not be readily apparent through traditional intuition. Alongside, two thermo-fluidic parameters are varied with an optimization objective to minimize maximum battery temperature, pressure drop and enhance heat transfer performance simultaneously. Initially, 160 sample points are generated using LHS, followed by simulations conducted using COMSOL Multiphysics for a fixed discharge rate of 3C and an ambient temperature of 35 °C. Then, Multi linear regression, Response surface approximation, Support vector machine, and Kriging model are considered in search of the best surrogate. Results highlighted that the Kriging model could make predictions more accurately and is used further. Later, a Pareto analysis is performed using non-dominated sorting genetic algorithm II to generate 100 optimal solutions influencing the three conflicting objectives. Finally, the best compromise solutions are obtained using a K-means clustering algorithm and are numerically validated. The case with a side length of 18.99 mm, a channel width of 4.99 mm, a branching angle of 91.51° and a coolant temperature of 25 °C is ideal. This aided in reducing the pressure drop by 62.32% and enhancing heat transfer coefficient by 64.41%, with a minimal change in maximum temperature compared to that of the initial design under the same mass flow rate limit of 0.003 kg s−1. In addition, the SHapley Additive exPlanations technique is employed to unravel the design and operating variable's impact on the objective functions. Overall, the proposed framework could be a valuable contribution to optimizing the cooling channel design and potentially boosting the battery lifespan.

Suggested Citation

  • Monika, Kokkula & Punnoose, Emma Mariam & Datta, Santanu Prasad, 2024. "Multi-objective optimization of cooling plate with hexagonal channel design for thermal management of Li-ion battery module," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008067
    DOI: 10.1016/j.apenergy.2024.123423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Huan-ling & Shi, Hang-bo & Shen, Han & Xie, Gongnan, 2019. "The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: Experimental and numerical optimization," Energy, Elsevier, vol. 189(C).
    2. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    2. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    3. Alessandro Ferraris & Alessandro Messana & Andrea Giancarlo Airale & Lorenzo Sisca & Henrique de Carvalho Pinheiro & Francesco Zevola & Massimiliana Carello, 2019. "Nafion ® Tubing Humidification System for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 12(9), pages 1-16, May.
    4. Ye, Mingzheng & Du, Jianqiang & Wang, Jin & Chen, Lei & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2022. "Investigation on thermal performance of nanofluids in a microchannel with fan-shaped cavities and oval pin fins," Energy, Elsevier, vol. 260(C).
    5. Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Huang, Yuhan, 2024. "Effects of intermittent pulsating flow on the performance of multi-channel cold plate in electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 294(C).
    6. Jiadian Wang & Dongyang Lv & Haonan Sha & Chenguang Lai & Junxiong Zeng & Tieyu Gao & Hao Yang & Hang Wu & Yanjun Jiang, 2024. "Numerical Investigation on the Thermal Performance of a Battery Pack by Adding Ribs in Cooling Channels," Energies, MDPI, vol. 17(17), pages 1-24, September.
    7. Edvin Podlevski & Jakub Kapuściński & Adam Dziubiński, 2024. "Numerical Investigation of Different Cooling Methods for Battery Packs," Energies, MDPI, vol. 17(20), pages 1-10, October.
    8. Kalkan, Orhan & Celen, Ali & Bakirci, Kadir, 2022. "Multi-objective optimization of a mini channeled cold plate for using thermal management of a Li-Ion battery," Energy, Elsevier, vol. 251(C).
    9. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    10. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Peizheng Li & Jiapei Zhao & Shuai Zhou & Jiabin Duan & Xinke Li & Houcheng Zhang & Jinliang Yuan, 2023. "Design and Optimization of a Liquid Cooling Thermal Management System with Flow Distributors and Spiral Channel Cooling Plates for Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-23, February.
    12. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    13. Marco Bernagozzi & Nicolas Miché & Anastasios Georgoulas & Cedric Rouaud & Marco Marengo, 2021. "Performance of an Environmentally Friendly Alternative Fluid in a Loop Heat Pipe-Based Battery Thermal Management System," Energies, MDPI, vol. 14(22), pages 1-19, November.
    14. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
    15. Mousavi, Sepehr & Zadehkabir, Amirhosein & Siavashi, Majid & Yang, Xiaohu, 2023. "An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials," Applied Energy, Elsevier, vol. 334(C).
    16. Li, Dexin & Zuo, Wei & Li, Qingqing & Zhang, Guangde & Zhou, Kun & E, Jiaqiang, 2023. "Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack," Energy, Elsevier, vol. 273(C).
    17. Li, Qing & Shao, Yu-qiang & Shao, Xiao-dong & Liu, Huan-ling & Xie, Gongnan, 2021. "Activation process modeling and performance analysis of thermal batteries considering ignition time interval of heat pellets," Energy, Elsevier, vol. 219(C).
    18. Qing Li & Yu-Qiang Shao & Huan-Ling Liu & Xiao-Dong Shao, 2020. "Multi-Objective Optimization of Activation Time and Discharge Time of Thermal Battery Using a Genetic Algorithm Approach," Energies, MDPI, vol. 13(24), pages 1-17, December.
    19. Wei, Li-si & Liu, Huan-ling & Tang, Chuan-geng & Tang, Xing-ping & Shao, Xiao-dong & Gongnan Xie,, 2024. "Investigation of novel type of cylindrical lithium-ion battery heat exchangers based on topology optimization," Energy, Elsevier, vol. 304(C).
    20. Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.