IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924016295.html
   My bibliography  Save this article

A power load forecasting method in port based on VMD-ICSS-hybrid neural network

Author

Listed:
  • Ma, Kai
  • Nie, Xuefeng
  • Yang, Jie
  • Zha, Linlin
  • Li, Guoqiang
  • Li, Haibin

Abstract

Aiming at the problem of load fluctuation at the power end of large ports, we propose a hybrid neural network joint model based on Mode Decomposition (MD) and Change Point Detection (CPD) to accomplish the load forecasting. In this study, a two-stage joint prediction model is constructed. First, the number of Intrinsic Mode Functions (IMFs) in the Variational Mode Decomposition (VMD) process was dynamically adjusted by introducing an improved Signal Energy (SE) evaluation metric. Subsequently, a Bidirectional Gated Recurrent Unit (Bi-GRU) network is employed to predict these IMFs, and the potential effect of the breakpoints on the prediction outcomes is investigated using the Iterative Cumulative Sum of Squares (ICSS) method. Finally, the eigenmode functions are summed and reconstructed, and then combined with the breakpoint data as inputs for the second stage prediction. To ensure the efficiency of the second stage prediction, the Mogrifier Long-and Short-Term Memory (Mogrifier-LSTM) network structure is improved. In the two-stage model, the adaptive tuning of hyperparameters is implemented by a Hunter-Prey Optimization (HPO) algorithm based on a redesigned chaotic mapping strategy. During the simulation, various neural network topologies were employed to confirm the effectiveness of the model in port power load forecasting.

Suggested Citation

  • Ma, Kai & Nie, Xuefeng & Yang, Jie & Zha, Linlin & Li, Guoqiang & Li, Haibin, 2025. "A power load forecasting method in port based on VMD-ICSS-hybrid neural network," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924016295
    DOI: 10.1016/j.apenergy.2024.124246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924016295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.