IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223014950.html
   My bibliography  Save this article

Extreme event counterfactual analysis of electricity consumption in Brazil: Historical impacts and future outlook under climate change

Author

Listed:
  • Zuin, Gianlucca
  • Buechler, Rob
  • Sun, Tao
  • Zanocco, Chad
  • Galuppo, Francisco
  • Veloso, Adriano
  • Rajagopal, Ram

Abstract

Climate change and other disruptive events have a significant impact on the electrical grid, affecting both power supply and consumption. With the rise in frequency and severity of extreme events, like heatwaves and droughts, the stability and operations of the system are increasingly at risk. The COVID-19 pandemic, unrelated to climate, has also brought about dramatic shifts in global energy patterns. We apply machine learning to model electricity consumption counterfactuals for Brazil, one of the largest hydropower producers, to understand the effects of these events. By training our model on 23 years of data (1999–2021), we achieved a .848 R2 and 2.6% MAPE. This enabled us to assess the impact of historical events on electricity consumption at both hourly and daily levels. Next, we use climate change scenarios to forecast electricity consumption and find that Brazil’s capacity is unlikely to meet demand from 2070 on-wards. Our research provides much needed insight into the impact of extreme events on Brazil, with implications for understanding energy system responsiveness and resiliency. The counterfactual approach proposed is also transferable to other countries and contexts, with the potential for new application areas given interactions between extreme events, climate change, and transitioning energy systems.

Suggested Citation

  • Zuin, Gianlucca & Buechler, Rob & Sun, Tao & Zanocco, Chad & Galuppo, Francisco & Veloso, Adriano & Rajagopal, Ram, 2023. "Extreme event counterfactual analysis of electricity consumption in Brazil: Historical impacts and future outlook under climate change," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223014950
    DOI: 10.1016/j.energy.2023.128101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
    2. Chen, Sheng-Tung & Kuo, Hsiao-I & Chen, Chi-Chung, 2007. "The relationship between GDP and electricity consumption in 10 Asian countries," Energy Policy, Elsevier, vol. 35(4), pages 2611-2621, April.
    3. Alberini, Anna & Prettico, Giuseppe & Shen, Chang & Torriti, Jacopo, 2019. "Hot weather and residential hourly electricity demand in Italy," Energy, Elsevier, vol. 177(C), pages 44-56.
    4. Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
    5. Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
    6. Hunt, Julian David & Nascimento, Andreas & Caten, Carla Schwengber ten & Tomé, Fernanda Munari Caputo & Schneider, Paulo Smith & Thomazoni, André Luis Ribeiro & Castro, Nivalde José de & Brandão, Robe, 2022. "Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow," Energy, Elsevier, vol. 239(PA).
    7. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Author Correction: Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(3), pages 271-271, March.
    8. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    9. Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
    10. Al-Bajjali, Saif Kayed & Shamayleh, Adel Yacoub, 2018. "Estimating the determinants of electricity consumption in Jordan," Energy, Elsevier, vol. 147(C), pages 1311-1320.
    11. Cabral, Joilson de Assis & Legey, Luiz Fernando Loureiro & Freitas Cabral, Maria Viviana de, 2017. "Electricity consumption forecasting in Brazil: A spatial econometrics approach," Energy, Elsevier, vol. 126(C), pages 124-131.
    12. Mendes, Carlos André B. & Beluco, Alexandre & Canales, Fausto Alfredo, 2017. "Some important uncertainties related to climate change in projections for the Brazilian hydropower expansion in the Amazon," Energy, Elsevier, vol. 141(C), pages 123-138.
    13. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    14. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(2), pages 108-110, February.
    15. Maluf de Lima, Lilian & Piedade Bacchi, Mirian Rumenos, 2019. "Assessing the impact of Brazilian economic growth on demand for electricity," Energy, Elsevier, vol. 172(C), pages 861-873.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Liugan & Ye, Kai & Wang, Yongzhen & Han, Wei & Xie, Meina & Chen, Longxiang, 2024. "Performance analysis of a hybrid system combining cryogenic separation carbon capture and liquid air energy storage (CS-LAES)," Energy, Elsevier, vol. 290(C).
    2. Shaik, Saleem, 2024. "Contribution of climate change to sector-source energy demand," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    2. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    3. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Liu, Ying & Lin, Boqiang & Xu, Bin, 2021. "Modeling the impact of energy abundance on economic growth and CO2 emissions by quantile regression: Evidence from China," Energy, Elsevier, vol. 227(C).
    5. Marwan, Marwan, 2020. "The impact of probability of electricity price spike and outside temperature to define total expected cost for air conditioning," Energy, Elsevier, vol. 195(C).
    6. Yu, Bolin & Fang, Debin & Meng, Jingxuan, 2021. "Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China," Energy, Elsevier, vol. 234(C).
    7. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    8. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    9. Gupta, Aparna & Palepu, Sai, 2024. "Designing risk-free service for renewable wind and solar resources," European Journal of Operational Research, Elsevier, vol. 315(2), pages 715-728.
    10. Carlos Enrique Carrasco-Gutierrez & Philipp Ehrl, 2023. "Regional Estimates of Residential Electricity Demand in Brazil," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 465-476, January.
    11. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    12. Shiwen Liu & Zhen Zhang & Junhua Yang & Wei Hu, 2022. "Exploring Increasing Urban Resident Electricity Consumption: The Spatial Spillover Effect of Resident Income," Energies, MDPI, vol. 15(12), pages 1-17, June.
    13. Zhong, Ruida & Zhao, Tongtiegang & Chen, Xiaohong, 2021. "Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?," Energy, Elsevier, vol. 237(C).
    14. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Gao, Sichen & Huang, Guohe & Zhang, Xiaoyue & Han, Dengcheng, 2022. "Small modular reactors enable the transition to a low-carbon power system across Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    17. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
    18. Neta, Ayana & Levi, Yoav & Morin, Efrat & Morin, Shai, 2023. "Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts," Ecological Modelling, Elsevier, vol. 480(C).
    19. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    20. Yu, Bolin & Fang, Debin & Yu, Hongwei & Zhao, Chaoyang, 2021. "Temporal-spatial determinants of renewable energy penetration in electricity production: Evidence from EU countries," Renewable Energy, Elsevier, vol. 180(C), pages 438-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223014950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.