IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics030626192400775x.html
   My bibliography  Save this article

Seasonal waste, geotherm, nuclear, wood net power generations forecasting using a novel hybrid grey model with seasonally buffered and time-varying effect

Author

Listed:
  • Li, Xuemei
  • Shi, Yansong
  • Zhao, Yufeng
  • Wu, Yajie
  • Zhou, Shiwei

Abstract

Seasonal volatility data is often disturbed by uncertain external shocks, making accurate forecasting particularly strenuous. This paper proposes a progressive adaptive prediction framework of data preprocessing, feature recognition, and seasonal prediction, namely SAWBO-TNGBM (1,1) model. Specifically, the seasonal full information variable weight weakening buffering operator is employed to effectively smooth the nonlinear fluctuation data. Furthermore, the grey Bernoulli model is extended by considering the time-varying effect, and Grey Wolf Optimization algorithm improves the overall prediction efficiency. Necessarily, the Convertibility, Unbiasedness, and Recursiveness are fully derived and proven, which undoubtedly improves the reliability and the ability to capture seasonal information. Empirically, from a data-driven perspective, US seasonal clean energy net generations with diverse fluctuating characteristics are utilized to validate the predicted performance, including quarterly series (waste, geotherm) and monthly series (nuclear, wood). Results obtained from comprehensive experimental comparative analyses show that the fitting ability of the SAWBO-TNGBM (1,1) model exceeds that of other models, demonstrating its flexibility, universality, and high precision. Lastly, innovative robustness testing and extended analysis ensure that the novel model provides an effective tool for seasonal forecasting in clean energy generation.

Suggested Citation

  • Li, Xuemei & Shi, Yansong & Zhao, Yufeng & Wu, Yajie & Zhou, Shiwei, 2024. "Seasonal waste, geotherm, nuclear, wood net power generations forecasting using a novel hybrid grey model with seasonally buffered and time-varying effect," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s030626192400775x
    DOI: 10.1016/j.apenergy.2024.123392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400775X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zekai & Hu, Xi & Guo, Huan & Xiong, Xin, 2023. "A novel Weighted Average Weakening Buffer Operator based Fractional order accumulation Seasonal Grouping Grey Model for predicting the hydropower generation," Energy, Elsevier, vol. 277(C).
    2. Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
    3. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).
    4. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    5. Wang, Zheng-Xin & He, Ling-Yang & Zheng, Hong-Hao, 2019. "Forecasting the residential solar energy consumption of the United States," Energy, Elsevier, vol. 178(C), pages 610-623.
    6. Kushwaha, Vishal & Pindoriya, Naran M., 2019. "A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast," Renewable Energy, Elsevier, vol. 140(C), pages 124-139.
    7. Zhao, Kai & Tian, Zhenyu & Zhang, Jinrui & Lu, Buchu & Hao, Yong, 2023. "Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation," Applied Energy, Elsevier, vol. 330(PB).
    8. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
    9. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    10. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    11. Pali, Bahadur Singh & Vadhera, Shelly, 2021. "A novel approach for hydropower generation using photovoltaic electricity as driving energy," Applied Energy, Elsevier, vol. 302(C).
    12. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    13. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    14. Guo, Jing & Lin, Penghui & Zhang, Limao & Pan, Yue & Xiao, Zhonghua, 2023. "Dynamic adaptive encoder-decoder deep learning networks for multivariate time series forecasting of building energy consumption," Applied Energy, Elsevier, vol. 350(C).
    15. Zeng, Bo & Duan, Huiming & Bai, Yun & Meng, Wei, 2018. "Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator," Energy, Elsevier, vol. 151(C), pages 238-249.
    16. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    17. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    18. Zhang, Yagang & Xu, Yan & Wang, Zengping, 2009. "GM(1,1) grey prediction of Lorenz chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1003-1009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    2. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    3. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    4. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    5. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    6. Weijie Zhou & Huimin Jiang & Jiaxin Chang, 2023. "Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    7. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
    8. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    9. Xin Ma & Yubin Cai & Hong Yuan & Yanqiao Deng, 2023. "Partially Linear Component Support Vector Machine for Primary Energy Consumption Forecasting of the Electric Power Sector in the United States," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    10. Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
    11. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    12. Xiong, Xin & Zhu, Zhenghao & Tian, Junhao & Guo, Huan & Hu, Xi, 2024. "A novel Seasonal Fractional Incomplete Gamma Grey Bernoulli Model and its application in forecasting hydroelectric generation," Energy, Elsevier, vol. 290(C).
    13. Wang, Zheng-Xin & He, Ling-Yang & Zheng, Hong-Hao, 2019. "Forecasting the residential solar energy consumption of the United States," Energy, Elsevier, vol. 178(C), pages 610-623.
    14. Wang, Yong & He, Xinbo & Zhou, Ying & Luo, Yongxian & Tang, Yanbing & Narayanan, Govindasami, 2024. "A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction," Energy, Elsevier, vol. 302(C).
    15. Li, Xuemei & Wu, Xinran & Zhao, Yufeng, 2023. "Research and application of multi-variable grey optimization model with interactive effects in marine emerging industries prediction," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    16. Weijie Zhou & Huihui Tao & Jiaxin Chang & Huimin Jiang & Li Chen, 2023. "Forecasting Chinese Electricity Consumption Based on Grey Seasonal Model with New Information Priority," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    17. Ye, Li & Dang, Yaoguo & Fang, Liping & Wang, Junjie, 2023. "A nonlinear interactive grey multivariable model based on dynamic compensation for forecasting the economy-energy-environment system," Applied Energy, Elsevier, vol. 331(C).
    18. Li, Chuan & Tao, Ying & Ao, Wengang & Yang, Shuai & Bai, Yun, 2018. "Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition," Energy, Elsevier, vol. 165(PB), pages 1220-1227.
    19. Michal Pavlicko & Mária Vojteková & Oľga Blažeková, 2022. "Forecasting of Electrical Energy Consumption in Slovakia," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    20. Mei Sang & Jing Jiang & Xin Huang & Feifei Zhu & Qian Wang, 2024. "Spatial and temporal changes in population distribution and population projection at county level in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s030626192400775x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.