IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006573.html
   My bibliography  Save this article

Real-time monitoring and optimization of a large-scale heat pump prone to fouling - towards a digital twin framework

Author

Listed:
  • Aguilera, José Joaquín
  • Meesenburg, Wiebke
  • Markussen, Wiebke Brix
  • Zühlsdorf, Benjamin
  • Elmegaard, Brian

Abstract

Large-scale heat pumps are a promising technology for the decarbonisation of heat supplied in buildings and industries, provided they operate as expected. However, common faults like fouling and unplanned downtime periods can significantly affect their performance and availability. This could limit the widespread adoption of large-scale heat pumps over other heating technologies such as gas and electric boilers. Approaches described in the literature to optimize the operation of large-scale heat pumps often lack validation under real-world conditions and do not account for performance degradation due to faults. This work demonstrates a step towards utilizing digital twins to improve the energy performance of a commercial large-scale heat pump affected by fouling. A framework was proposed based on the real-time adaptation of digital twins, where a simulation model was calibrated online based on measurements from the heat pump in operation, which was then used for set point optimization. This enabled to determine optimal intermediate pressure set points in the heat pump operating under varying levels of fouling over time. The framework was tested on different periods of heat pump operation spread over ten calendar months. The results showed that the use of online calibration rather than a single calibration decreased performance estimation errors between 3 and 17 percentage points. Moreover, the set points determined by the online-calibrated model, along with a simpler polynomial model derived from it, showed improvements in the heat pump performance by up to 3%, depending on the level of fouling. The findings of this study demonstrated the potential to extend the proposed framework using digital twins to enhance the energy efficiency of large-scale heat pumps.

Suggested Citation

  • Aguilera, José Joaquín & Meesenburg, Wiebke & Markussen, Wiebke Brix & Zühlsdorf, Benjamin & Elmegaard, Brian, 2024. "Real-time monitoring and optimization of a large-scale heat pump prone to fouling - towards a digital twin framework," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006573
    DOI: 10.1016/j.apenergy.2024.123274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    3. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    4. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    5. Florin Iov & Mahmood Khatibi & Jan Dimon Bendtsen, 2020. "On the Participation of Power-To-Heat Assets in Frequency Regulation Markets—A Danish Case Study," Energies, MDPI, vol. 13(18), pages 1-22, September.
    6. Shin, Hyun Ho & Kim, Kibong & Lee, Minwoo & Han, Changho & Kim, Yongchan, 2024. "Maximized thermal energy utilization of surface water-source heat pumps using heat source compensation strategies under low water temperature conditions," Energy, Elsevier, vol. 288(C).
    7. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    8. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    10. Aleksandar Ivančić & Joaquim Romaní & Jaume Salom & Maria-Victoria Cambronero, 2021. "Performance Assessment of District Energy Systems with Common Elements for Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-22, April.
    11. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
    13. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Lämmle, Manuel & Bongs, Constanze & Wapler, Jeannette & Günther, Danny & Hess, Stefan & Kropp, Michael & Herkel, Sebastian, 2022. "Performance of air and ground source heat pumps retrofitted to radiator heating systems and measures to reduce space heating temperatures in existing buildings," Energy, Elsevier, vol. 242(C).
    15. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    16. Henrik Schwaeppe & Luis Böttcher & Klemens Schumann & Lukas Hein & Philipp Hälsig & Simon Thams & Paula Baquero Lozano & Albert Moser, 2022. "Analyzing Intersectoral Benefits of District Heating in an Integrated Generation and Transmission Expansion Planning Model," Energies, MDPI, vol. 15(7), pages 1-31, March.
    17. Cao, Karl-Kiên & Nitto, Alejandro Nicolás & Sperber, Evelyn & Thess, André, 2018. "Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems," Energy, Elsevier, vol. 164(C), pages 925-936.
    18. Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
    19. Jakub Szymiczek & Krzysztof Szczotka & Marian Banaś & Przemysław Jura, 2022. "Efficiency of a Compressor Heat Pump System in Different Cycle Designs: A Simulation Study for Low-Enthalpy Geothermal Resources," Energies, MDPI, vol. 15(15), pages 1-19, July.
    20. Ziyang Guo & Yongjun Sun & Shu-Yuan Pan & Pen-Chi Chiang, 2019. "Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants," IJERPH, MDPI, vol. 16(7), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.