IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006573.html
   My bibliography  Save this article

Real-time monitoring and optimization of a large-scale heat pump prone to fouling - towards a digital twin framework

Author

Listed:
  • Aguilera, José Joaquín
  • Meesenburg, Wiebke
  • Markussen, Wiebke Brix
  • Zühlsdorf, Benjamin
  • Elmegaard, Brian

Abstract

Large-scale heat pumps are a promising technology for the decarbonisation of heat supplied in buildings and industries, provided they operate as expected. However, common faults like fouling and unplanned downtime periods can significantly affect their performance and availability. This could limit the widespread adoption of large-scale heat pumps over other heating technologies such as gas and electric boilers. Approaches described in the literature to optimize the operation of large-scale heat pumps often lack validation under real-world conditions and do not account for performance degradation due to faults. This work demonstrates a step towards utilizing digital twins to improve the energy performance of a commercial large-scale heat pump affected by fouling. A framework was proposed based on the real-time adaptation of digital twins, where a simulation model was calibrated online based on measurements from the heat pump in operation, which was then used for set point optimization. This enabled to determine optimal intermediate pressure set points in the heat pump operating under varying levels of fouling over time. The framework was tested on different periods of heat pump operation spread over ten calendar months. The results showed that the use of online calibration rather than a single calibration decreased performance estimation errors between 3 and 17 percentage points. Moreover, the set points determined by the online-calibrated model, along with a simpler polynomial model derived from it, showed improvements in the heat pump performance by up to 3%, depending on the level of fouling. The findings of this study demonstrated the potential to extend the proposed framework using digital twins to enhance the energy efficiency of large-scale heat pumps.

Suggested Citation

  • Aguilera, José Joaquín & Meesenburg, Wiebke & Markussen, Wiebke Brix & Zühlsdorf, Benjamin & Elmegaard, Brian, 2024. "Real-time monitoring and optimization of a large-scale heat pump prone to fouling - towards a digital twin framework," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006573
    DOI: 10.1016/j.apenergy.2024.123274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fredrik Skaug Fadnes & Mohsen Assadi, 2024. "Utilizing Wastewater Tunnels as Thermal Reservoirs for Heat Pumps in Smart Cities," Energies, MDPI, vol. 17(19), pages 1-35, September.
    2. Buddhika Arsecularatne & Navodana Rodrigo & Ruidong Chang, 2024. "Digital Twins for Reducing Energy Consumption in Buildings: A Review," Sustainability, MDPI, vol. 16(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Khosravi, Fatemeh & Lowes, Richard & Ugalde-Loo, Carlos E., 2023. "Cooling is hotting up in the UK," Energy Policy, Elsevier, vol. 174(C).
    3. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
    4. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
    5. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    6. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    7. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    8. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    9. Kavian, Soheil & Hakkaki-Fard, Ali & Jafari Mosleh, Hassan, 2020. "Energy performance and economic feasibility of hot spring-based district heating system – A case study," Energy, Elsevier, vol. 211(C).
    10. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    11. Florin Iov & Mahmood Khatibi & Jan Dimon Bendtsen, 2020. "On the Participation of Power-To-Heat Assets in Frequency Regulation Markets—A Danish Case Study," Energies, MDPI, vol. 13(18), pages 1-22, September.
    12. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Jonynas, Rolandas & Puida, Egidijus & Poškas, Robertas & Paukštaitis, Linas & Jouhara, Hussam & Gudzinskas, Juozas & Miliauskas, Gintautas & Lukoševičius, Valdas, 2020. "Renewables for district heating: The case of Lithuania," Energy, Elsevier, vol. 211(C).
    14. Hiltunen, Pauli & Syri, Sanna, 2021. "Low-temperature waste heat enabling abandoning coal in Espoo district heating system," Energy, Elsevier, vol. 231(C).
    15. Meesenburg, Wiebke & Ommen, Torben & Elmegaard, Brian, 2018. "Dynamic exergoeconomic analysis of a heat pump system used for ancillary services in an integrated energy system," Energy, Elsevier, vol. 152(C), pages 154-165.
    16. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
    17. Popovski, Eftim & Aydemir, Ali & Fleiter, Tobias & Bellstädt, Daniel & Büchele, Richard & Steinbach, Jan, 2019. "The role and costs of large-scale heat pumps in decarbonising existing district heating networks – A case study for the city of Herten in Germany," Energy, Elsevier, vol. 180(C), pages 918-933.
    18. Charalampos Alexopoulos & Osama Aljolani & Florian Heberle & Tryfon C. Roumpedakis & Dieter Brüggemann & Sotirios Karellas, 2020. "Design Evaluation for a Finned-Tube CO 2 Gas Cooler in Residential Applications," Energies, MDPI, vol. 13(10), pages 1-17, May.
    19. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    20. Shin, Hyun Ho & Kim, Kibong & Lee, Minwoo & Han, Changho & Kim, Yongchan, 2024. "Maximized thermal energy utilization of surface water-source heat pumps using heat source compensation strategies under low water temperature conditions," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.