IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005087.html
   My bibliography  Save this article

Efficient water recovery and power generation system based on air-cooled fuel cell with semi-closed cathode circulation mode

Author

Listed:
  • Yang, Yuchen
  • Wu, Zhen
  • Wang, Bofei
  • Yao, Jing
  • Yang, Fusheng
  • Zhang, Zaoxiao
  • Ren, Jianwei

Abstract

Air-cooled proton exchange membrane hydrogen fuel cell with on-line hydrogen production by hydrolysis has potential for portable applications due to its high volumetric power density and self-humidification. However, plenty of reserve water significantly reduces the power density of fuel cell system. Moreover, water recovery from fuel cell tail gas is difficult, because the tail gas humidity is very low due to excess cathode air as coolant. In this work, the dead-ended anode and semi-closed cathode proton exchange membrane fuel cell is proposed to achieve efficient water recovery and energy conversion via semi-closed cathode circulation mode. In this mode, cathode O2-poor tail gas is recycled as coolant instead of fresh air, which helps to enlarge the tail gas humidity by reducing the stoichiometric ratio of cathode to anode gas. The system lumped model with detailed component description is developed for optimization. >96% water production can be recycled under atmosphere temperature. The demand of fresh air is greatly reduced from 56 to 2 times of the consumption. Besides, the multi-objective optimization between water recovery and electrochemical performance shows high-efficiency water recovery of 94.70% and high energy conversion efficiency of 54.82%.

Suggested Citation

  • Yang, Yuchen & Wu, Zhen & Wang, Bofei & Yao, Jing & Yang, Fusheng & Zhang, Zaoxiao & Ren, Jianwei, 2024. "Efficient water recovery and power generation system based on air-cooled fuel cell with semi-closed cathode circulation mode," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005087
    DOI: 10.1016/j.apenergy.2024.123125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scaccabarozzi, R. & Gatti, M. & Campanari, S. & Martelli, E., 2021. "Solid oxide semi-closed CO2 cycle: A hybrid power cycle with 75% net efficiency and zero emissions," Applied Energy, Elsevier, vol. 290(C).
    2. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Self-humidifying effect of air self-circulation system for proton exchange membrane fuel cell engines," Renewable Energy, Elsevier, vol. 164(C), pages 1143-1155.
    3. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    4. Wan, Zhongmin & Yan, Hanzhang & Sun, Yun & Yang, Chen & Chen, Xi & Kong, Xiangzhong & Chen, Yiyu & Tu, Zhengkai & Wang, Xiaodong, 2023. "Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field," Applied Energy, Elsevier, vol. 333(C).
    5. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    6. Hu, Junming & Li, Jianqiu & Xu, Liangfei & Huang, Fusen & Ouyang, Minggao, 2016. "Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model," Energy, Elsevier, vol. 111(C), pages 869-883.
    7. Wang, Bowen & Wu, Kangcheng & Xi, Fuqiang & Xuan, Jin & Xie, Xu & Wang, Xiaoyang & Jiao, Kui, 2019. "Numerical analysis of operating conditions effects on PEMFC with anode recirculation," Energy, Elsevier, vol. 173(C), pages 844-856.
    8. Qiu, Diankai & Zhou, Xiangyang & Chen, Minxue & Xu, Zhutian & Peng, Linfa, 2023. "Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state," Applied Energy, Elsevier, vol. 350(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    2. Xu, Liangfei & Hu, Zunyan & Fang, Chuan & Li, Jianqiu & Hong, Po & Jiang, Hongliang & Guo, Di & Ouyang, Minggao, 2021. "Anode state observation of polymer electrolyte membrane fuel cell based on unscented Kalman filter and relative humidity sensor before flooding," Renewable Energy, Elsevier, vol. 168(C), pages 1294-1307.
    3. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    4. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    5. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    6. Xiaogang Wu & Boyang Yu & Jiuyu Du & Wenwen Shi, 2019. "Feedforward-Double Feedback Control System of Dual-Switch Boost DC/DC Converters for Fuel Cell Vehicles," Energies, MDPI, vol. 12(15), pages 1-18, July.
    7. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    8. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Self-humidifying effect of air self-circulation system for proton exchange membrane fuel cell engines," Renewable Energy, Elsevier, vol. 164(C), pages 1143-1155.
    9. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    10. Ma, Haoran & Liu, Junheng & Liang, Wenwen & Li, Jiyu & Zhao, Wenyao & Sun, Ping & Ji, Qian, 2024. "Effects of PEMFC cooling channel insulation coating on heat transfer and electrical discharge characteristics of nanofluid coolants," Applied Energy, Elsevier, vol. 357(C).
    11. Li, Yuxuan & Li, Hongkun & Liu, Weiqun & Zhu, Qiao, 2024. "Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon," Applied Energy, Elsevier, vol. 355(C).
    12. Zhang, Zhiqing & Liu, Hui & Yang, Dayong & Li, Junming & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Performance enhancements of power density and exergy efficiency for high-temperature proton exchange membrane fuel cell based on RSM-NSGA III," Energy, Elsevier, vol. 301(C).
    13. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zhou, Keliang & Zong, Yi & Fu, Zhichao & Liu, Hao, 2021. "Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 299(C).
    14. Wu, Y. & Xu, L. & Zhou, S. & Yang, J. & Kockelmann, W. & Han, Y. & Li, Q. & Chen, W. & Coppens, M.-O. & Shearing, P.R. & Brett, D.J.L. & Jervis, R., 2024. "Water management and mass transport of a fractal metal foam flow-field based polymer electrolyte fuel cell using operando neutron imaging," Applied Energy, Elsevier, vol. 364(C).
    15. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    16. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    17. Dapeng Gong & Sichuan Xu & Yuan Gao, 2023. "Investigation of Water and Heat Transfer Mechanism in PEMFCs Based on a Two-Phase Non-Isothermal Model," Energies, MDPI, vol. 16(2), pages 1-20, January.
    18. Lu, Xiaohui & Li, Bing & Guo, Lin & Wang, Peifang & Yousefi, Nasser, 2021. "Exergy analysis of a polymer fuel cell and identification of its optimum operating conditions using improved Farmland Fertility Optimization," Energy, Elsevier, vol. 216(C).
    19. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    20. Zhang, Fan & Wang, Bowen & Gong, Zhichao & Zhang, Xiyuan & Qin, Zhikun & Jiao, Kui, 2023. "Development of photovoltaic-electrolyzer-fuel cell system for hydrogen production and power generation," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.