IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics030626192400285x.html
   My bibliography  Save this article

The impact of decarbonising the iron and steel industry on European power and hydrogen systems

Author

Listed:
  • Boldrini, Annika
  • Koolen, Derck
  • Crijns-Graus, Wina
  • van den Broek, Machteld

Abstract

The transition of the European iron and steel industry (ISI) towards low-carbon manufacturing is crucial for the European Union (EU)’s 2050 climate neutrality objective. One emerging solution is electrification by using hydrogen (H2) as iron ore reductant, which increases specific electricity use per tonne of steel up to 35 times compared to the conventional, most adopted coal-based technology. This study develops three scenarios, encompassing a moderate to an accelerated ISI transition, to evaluate the impact of the ISI decarbonisation on the power system CO2 emissions, generation mix and volume, and marginal prices in 2030. The study first estimates future electricity and H2 demand by considering country-specific technologies deployment and energy intensities. Then, these estimates serves as input to the model METIS to simulate European power system operations through a unit commitment and economic dispatch problem. The study shows that the power system can accommodate a transition of the ISI that substitutes 28% of the coal-based production with low carbon technologies, mainly based on H2. This leads to a 25% reduction in direct CO2 emissions and a demand increase of 20 TWh of electricity and 40 TWhHHV of H2. Furthermore, a 50% reduction in indirect power system emissions is achieved, compared to 2018, thanks to the substantial renewable power capacity deployment foreseen in the coming years. The study also demonstrates that a reduction of indirect CO2 emissions by over 85% can be achieved by deploying 1.2 and 2.7 GW of renewable power generators, and 200 and 400 MW of electrolyser capacity for each million tonne of steel produced annually with low-carbon technologies. Additional renewable capacity that ensures green steel production is also key to maintaining stable electricity prices.

Suggested Citation

  • Boldrini, Annika & Koolen, Derck & Crijns-Graus, Wina & van den Broek, Machteld, 2024. "The impact of decarbonising the iron and steel industry on European power and hydrogen systems," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s030626192400285x
    DOI: 10.1016/j.apenergy.2024.122902
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400285X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arens, Marlene & Åhman, Max & Vogl, Valentin, 2021. "Which countries are prepared to green their coal-based steel industry with electricity? - Reviewing climate and energy policy as well as the implementation of renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Lisa Göransson & Mariliis Lehtveer & Emil Nyholm & Maria Taljegard & Viktor Walter, 2019. "The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives," Energies, MDPI, vol. 12(24), pages 1-23, December.
    3. Kun Peng & Kuishuang Feng & Bin Chen & Yuli Shan & Ning Zhang & Peng Wang & Kai Fang & Yanchao Bai & Xiaowei Zou & Wendong Wei & Xinyi Geng & Yiyi Zhang & Jiashuo Li, 2023. "The global power sector’s low-carbon transition may enhance sustainable development goal achievement," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
    5. Toktarova, Alla & Walter, Viktor & Göransson, Lisa & Johnsson, Filip, 2022. "Interaction between electrified steel production and the north European electricity system," Applied Energy, Elsevier, vol. 310(C).
    6. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiss, Robert & Ikäheimo, Jussi, 2024. "Flexible industrial power-to-X production enabling large-scale wind power integration: A case study of future hydrogen direct reduction iron production in Finland," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toktarova, Alla & Walter, Viktor & Göransson, Lisa & Johnsson, Filip, 2022. "Interaction between electrified steel production and the north European electricity system," Applied Energy, Elsevier, vol. 310(C).
    2. Alla Toktarova & Lisa Göransson & Filip Johnsson, 2021. "Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    4. Lee, Hwarang, 2023. "Decarbonization strategies for steel production with uncertainty in hydrogen direct reduction," Energy, Elsevier, vol. 283(C).
    5. Weiss, Robert & Ikäheimo, Jussi, 2024. "Flexible industrial power-to-X production enabling large-scale wind power integration: A case study of future hydrogen direct reduction iron production in Finland," Applied Energy, Elsevier, vol. 365(C).
    6. Walter, Viktor & Göransson, Lisa & Taljegard, Maria & Öberg, Simon & Odenberger, Mikael, 2023. "Low-cost hydrogen in the future European electricity system – Enabled by flexibility in time and space," Applied Energy, Elsevier, vol. 330(PB).
    7. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    8. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    9. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    10. Oei, Pao-Yu & Burandt, Thorsten & Hainsch, Karlo & Löffler, Konstantin & Kemfert, Claudia, 2020. "Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 103-120.
    11. Haiyang Shang & Fang Su & Serhat Yüksel & Hasan Dinçer, 2021. "Identifying the Strategic Priorities of the Technical Factors for the Sustainable Low Carbon Industry Based on Macroeconomic Conditions," SAGE Open, , vol. 11(2), pages 21582440211, May.
    12. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    13. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Jacob, Ron M. & Tokheim, Lars-André, 2023. "Electrified calciner concept for CO2 capture in pyro-processing of a dry process cement plant," Energy, Elsevier, vol. 268(C).
    15. De Luca Peña, Laura Vittoria & Taelman, Sue Ellen & Bas, Bilge & Staes, Jan & Mertens, Jan & Clavreul, Julie & Préat, Nils & Dewulf, Jo, 2024. "Monetized (socio-)environmental handprint and footprint of an offshore windfarm in the Belgian Continental Shelf: An assessment of local, regional and global impacts," Applied Energy, Elsevier, vol. 353(PA).
    16. S. Vögele & K. Govorukha & P. Mayer & I. Rhoden & D. Rübbelke & W. Kuckshinrichs, 2023. "Effects of a coal phase-out in Europe on reaching the UN Sustainable Development Goals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 879-916, January.
    17. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    18. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    19. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    20. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s030626192400285x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.