IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002575.html
   My bibliography  Save this article

Mixed-integer non-linear model predictive control of district heating networks

Author

Listed:
  • Jansen, Jelger
  • Jorissen, Filip
  • Helsen, Lieve

Abstract

The use of model predictive control (MPC) to optimally control district heating (DH) networks can support the transition to a carbon-neutral heating sector. DH systems are inherently subject to non-linear physics and integer controls, which results in a mixed-integer non-linear program (MINLP). In this work, an MINLP-based MPC strategy is developed for the optimal control of a DH network, building upon an existing decomposition approach (combinatorial integral approximation). The main novelty of this work is the application of an integrated MINLP-based MPC to a DH network and its comparison to a non-linear program (NLP)-based MPC. To successfully develop this MINLP-based approach, the pycombina tool is efficiently integrated in the existing NLP-based MPC toolchain (TACO) and the concept of an augmented time horizon is introduced to manage dwell time constraints. The MINLP-based MPC is applied to two use cases: a relatively simple nine-zone terraced house and a more complex fourth generation DH network. The simulation study shows that the MINLP-based MPC yields a comparable control performance to that of a previously developed NLP-based MPC, but the CPU time is approximately eight times higher. However, the absence of a post-processing step (which requires ample engineering practice and time) and the improved match between the MPC’s controller model and the actual system show promise for the MINLP-based MPC to control complex DH networks.

Suggested Citation

  • Jansen, Jelger & Jorissen, Filip & Helsen, Lieve, 2024. "Mixed-integer non-linear model predictive control of district heating networks," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002575
    DOI: 10.1016/j.apenergy.2024.122874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schweiger, Gerald & Larsson, Per-Ola & Magnusson, Fredrik & Lauenburg, Patrick & Velut, Stéphane, 2017. "District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization," Energy, Elsevier, vol. 137(C), pages 566-578.
    2. Hering, Dominik & Cansev, Mehmet Ege & Tamassia, Eugenio & Xhonneux, André & Müller, Dirk, 2021. "Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming," Energy, Elsevier, vol. 224(C).
    3. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    4. Bürger, Adrian & Bohlayer, Markus & Hoffmann, Sarah & Altmann-Dieses, Angelika & Braun, Marco & Diehl, Moritz, 2020. "A whole-year simulation study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use components," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bürger, Adrian & Bohlayer, Markus & Hoffmann, Sarah & Altmann-Dieses, Angelika & Braun, Marco & Diehl, Moritz, 2020. "A whole-year simulation study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use components," Applied Energy, Elsevier, vol. 258(C).
    2. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    4. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
    5. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    6. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    7. Wassim Salameh & Jalal Faraj & Elias Harika & Rabih Murr & Mahmoud Khaled, 2021. "On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation," Energies, MDPI, vol. 14(13), pages 1-12, June.
    8. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    9. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    10. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    11. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    12. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    13. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
    14. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    15. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    16. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    18. Muthalagappan Narayanan & Aline Ferreira de Lima & André Felipe Oliveira de Azevedo Dantas & Walter Commerell, 2020. "Development of a Coupled TRNSYS-MATLAB Simulation Framework for Model Predictive Control of Integrated Electrical and Thermal Residential Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-29, November.
    19. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    20. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.