IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp566-578.html
   My bibliography  Save this article

District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization

Author

Listed:
  • Schweiger, Gerald
  • Larsson, Per-Ola
  • Magnusson, Fredrik
  • Lauenburg, Patrick
  • Velut, Stéphane

Abstract

Future district heating systems (so called 4th Generation District Heating (4GDH) systems) have to address challenges such as integration of (de)centralized renewable energy sources and storage, low system temperatures and high fluctuation of the supply temperature. This paper presents a novel framework for representing and simplifying on-grid energy systems as well as for dynamic thermo-hydraulic simulation and optimization of district heating and cooling systems. We describe physically precise and numerically robust models for simulation and continuous optimization. Furthermore, we propose a novel method to decompose a mixed-integer-optimal control problem into two sub-problems, separating the discrete part from the continuous. Two use cases show the applicability of the framework. An existing district heating system with more than 100 consumers is adapted to test the framework based on simulation requirements of 4GDH systems. The second case presents the continuous optimization of a district heating system in a virtual city district. A main advantage of combining equation-based modelling and nonlinear optimization is the possibility of including model coherences based on physical laws into the optimization formulation. Results show that the framework is well-suited for simulating larger scale 4GDH systems and that the solution time of the continuous optimization problem is sufficiently low for real-time applications.

Suggested Citation

  • Schweiger, Gerald & Larsson, Per-Ola & Magnusson, Fredrik & Lauenburg, Patrick & Velut, Stéphane, 2017. "District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization," Energy, Elsevier, vol. 137(C), pages 566-578.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:566-578
    DOI: 10.1016/j.energy.2017.05.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Köfinger, M. & Basciotti, D. & Schmidt, R.R. & Meissner, E. & Doczekal, C. & Giovannini, A., 2016. "Low temperature district heating in Austria: Energetic, ecologic and economic comparison of four case studies," Energy, Elsevier, vol. 110(C), pages 95-104.
    2. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    3. Orehounig, Kristina & Evins, Ralph & Dorer, Viktor, 2015. "Integration of decentralized energy systems in neighbourhoods using the energy hub approach," Applied Energy, Elsevier, vol. 154(C), pages 277-289.
    4. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    5. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    6. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    7. Brange, Lisa & Englund, Jessica & Lauenburg, Patrick, 2016. "Prosumers in district heating networks – A Swedish case study," Applied Energy, Elsevier, vol. 164(C), pages 492-500.
    8. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
    9. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    10. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    11. Schweiger, Gerald & Rantzer, Jonatan & Ericsson, Karin & Lauenburg, Patrick, 2017. "The potential of power-to-heat in Swedish district heating systems," Energy, Elsevier, vol. 137(C), pages 661-669.
    12. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
    13. Duquette, Jean & Rowe, Andrew & Wild, Peter, 2016. "Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow," Applied Energy, Elsevier, vol. 178(C), pages 383-393.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    15. Eligius M. T. Hendrix & Boglárka G.-Tóth, 2010. "Nonlinear Programming algorithms," Springer Optimization and Its Applications, in: Introduction to Nonlinear and Global Optimization, chapter 5, pages 91-136, Springer.
    16. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    17. Mertz, Théophile & Serra, Sylvain & Henon, Aurélien & Reneaume, Jean-Michel, 2016. "A MINLP optimization of the configuration and the design of a district heating network: Academic study cases," Energy, Elsevier, vol. 117(P2), pages 450-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    2. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    3. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    4. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    5. Serafeim Moustakidis & Ioannis Meintanis & George Halikias & Nicos Karcanias, 2019. "An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results," Resources, MDPI, vol. 8(1), pages 1-15, January.
    6. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    7. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    8. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    9. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    10. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    12. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    13. Sang Hwa Song & Taesu Cheong, 2018. "Pattern-Based Set Partitioning Algorithm for the Integrated Sustainable Operation of a District Heating Network," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    14. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    15. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    16. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    17. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.
    18. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    19. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    20. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:566-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.