IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v366y2024ics0306261924006780.html
   My bibliography  Save this article

Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage

Author

Listed:
  • Bu, Yuntao
  • Yu, Hao
  • Ji, Haoran
  • Song, Guanyu
  • Xu, Jing
  • Li, Juan
  • Zhao, Jinli
  • Li, Peng

Abstract

Community integrated energy systems (CIES) have become flexible contributors to DR within distribution networks. Buildings’ thermal capacities can serve as virtual energy storage (VES) to augment CIES flexibility. However, uncertainties in environmental factors and building parameters hinder the accurate use of virtual energy storage without compromising user comfort. In addition, a single type of flexible resource is usually insufficient to meet the complex DR requirements of distribution system operators, underscoring the need for coordinating physical and virtual energy storage. This study proposes a hybrid data-driven operational approach to enhance the DR of a CIES. Real-time measurements were employed instead of exact system models and parameters to effectively dispatch VES during DR events. Additionally, rolling robust optimization was implemented to coordinate physical and virtual energy storage for DR, accommodating various uncertainties and multi-timescale characteristics within the CIES. Through its application to a case study, the proposed method demonstrated its efficacy in leveraging VES in a CIES for DR without compromising users’ thermal comfort. In a typical power reduction scenario, the DR revenue increased by 39.6%, while the overall operational cost decreased by 17.0%. In the power increase scenario, the DR revenue increased by 122.0%, and the overall operational cost decreased by 20.0%.

Suggested Citation

  • Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006780
    DOI: 10.1016/j.apenergy.2024.123295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2022. "Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy," Applied Energy, Elsevier, vol. 314(C).
    2. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    3. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    4. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    5. Mu, Yunfei & Xu, Yurui & Cao, Yan & Chen, Wanqing & Jia, Hongjie & Yu, Xiaodan & Jin, Xiaolong, 2022. "A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model," Applied Energy, Elsevier, vol. 323(C).
    6. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    8. Norouzi, Mohammadali & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Fotuhi-Firuzabad, Mahmud, 2022. "Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids," Energy, Elsevier, vol. 239(PB).
    9. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
    10. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).
    11. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).
    12. Liu, Guodong & Jiang, Tao & Ollis, Thomas B. & Zhang, Xiaohu & Tomsovic, Kevin, 2019. "Distributed energy management for community microgrids considering network operational constraints and building thermal dynamics," Applied Energy, Elsevier, vol. 239(C), pages 83-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei & Qin, Chengliang & Ma, Zhe & Li, Jian & Zhang, Tong & Wang, Yazhou & Zhang, Xuelin & Xue, Xiaodai, 2024. "Dynamic simulation and optimal design of a combined cold and power system with 10 MW compressed air energy storage and integrated refrigeration," Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Yunfei & Xu, Yurui & Cao, Yan & Chen, Wanqing & Jia, Hongjie & Yu, Xiaodan & Jin, Xiaolong, 2022. "A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model," Applied Energy, Elsevier, vol. 323(C).
    2. Hao, Junhong & Feng, Xiaolong & Chen, Xiangru & Jin, Xilin & Wang, Xingce & Hao, Tong & Hong, Feng & Du, Xiaoze, 2024. "Optimal scheduling of active distribution network considering symmetric heat and power source-load spatial-temporal characteristics," Applied Energy, Elsevier, vol. 373(C).
    3. Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).
    4. Wang, Cheng & Liu, Chuang & Lin, Yuzhang & Bi, Tianshu, 2020. "Day-ahead dispatch of integrated electric-heat systems considering weather-parameter-driven residential thermal demands," Energy, Elsevier, vol. 203(C).
    5. Xu, Yijun & Zhang, Xuan & Li, Ji, 2024. "Multiple energy planning in the energy hub considering renewable sources, electric vehicles and management in the daily electricity market with wind multi-objective optimization algorithm," Energy, Elsevier, vol. 309(C).
    6. Noorollahi, Younes & Zahedi, Rahim & Ahmadi, Esmaeil & Khaledi, Arian, 2025. "Low carbon solar-based sustainable energy system planning for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Al-Quraan, A. & Al-Mhairat, B., 2024. "Economic predictive control-based sizing and energy management for grid-connected hybrid renewable energy systems," Energy, Elsevier, vol. 302(C).
    9. Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    10. Horak, Daniel & Hainoun, Ali & Neugebauer, Georg & Stoeglehner, Gernot, 2022. "A review of spatio-temporal urban energy system modeling for urban decarbonization strategy formulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Khan, Taimoor & Choi, Chang, 2025. "Attention enhanced dual stream network with advanced feature selection for power forecasting," Applied Energy, Elsevier, vol. 377(PC).
    12. Meng, Lingzhuochao & Yang, Xiyun & Zhu, Jiang & Wang, Xinzhe & Meng, Xin, 2024. "Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty," Applied Energy, Elsevier, vol. 362(C).
    13. Fan, Yukun & Liu, Weifeng & Zhu, Feilin & Wang, Sen & Yue, Hao & Zeng, Yurou & Xu, Bin & Zhong, Ping-an, 2024. "Short-term stochastic multi-objective optimization scheduling of wind-solar-hydro hybrid system considering source-load uncertainties," Applied Energy, Elsevier, vol. 372(C).
    14. Zhong, Shangpeng & Wang, Xiaoming & Wu, Hongbin & He, Ye & Xu, Bin & Ding, Ming, 2024. "Energy hub management for integrated energy systems: A multi-objective optimization control strategy based on distributed output and energy conversion characteristics," Energy, Elsevier, vol. 306(C).
    15. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness," Applied Energy, Elsevier, vol. 360(C).
    16. Pan, Yushu & Ju, Liwei & Yang, Shenbo & Guo, Xinyu & Tan, Zhongfu, 2024. "A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity," Applied Energy, Elsevier, vol. 369(C).
    17. Xie, Haonan & Goh, Hui Hwang & Zhang, Dongdong & Sun, Hui & Dai, Wei & Kurniawan, Tonni Agustiono & Dennis Wong, M.L. & Teo, Kenneth Tze Kin & Goh, Kai Chen, 2024. "Eco-Energetical analysis of circular economy and community-based virtual power plants (CE-cVPP): A systems engineering-engaged life cycle assessment (SE-LCA) method for sustainable renewable energy de," Applied Energy, Elsevier, vol. 365(C).
    18. Liang, Hejun & Pirouzi, Sasan, 2024. "Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources," Energy, Elsevier, vol. 293(C).
    19. Najafi, Arsalan & Tsaousoglou, Georgios & Gao, Kun & Parishwad, Omkar, 2024. "Coordination of coupled electrified road systems and active power distribution networks with flexibility integration," Applied Energy, Elsevier, vol. 369(C).
    20. Xiang, Shizhe & Xu, Da & Wang, Pengda & Bai, Ziyi & Zeng, Lingxiong, 2024. "Optimal expansion planning of 5G and distribution systems considering source-network-load-storage coordination," Applied Energy, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.