IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04317812.html
   My bibliography  Save this paper

Towards Data-Driven Energy Communities: A Review of Open-Source Datasets, Models and Tools

Author

Listed:
  • H. Kazmi
  • Í. Munné-Collado
  • Fahad Mehmood

    (Métis Lab EM Normandie - EM Normandie - École de Management de Normandie)

  • T.A. Syed
  • J. Driesen

Abstract

Energy communities will play a central role in the sustainable energy transition by helping inform and engage end users to become more responsible consumers of energy. However, the true potential of energy communities can only be unlocked at scale. This scalability requires data-driven solutions that model not just the behavior of building occupants but also of energy flexible resources in buildings, distributed generation and grid conditions in general. This understanding can then be utilized to improve the design and operation of energy communities in a variety of real-world settings. However, in practice, collecting and analyzing the data necessary to realize these objectives forms a large part of such projects, and is often seen as a prohibitive stumbling block. Furthermore, without a proper understanding of the local context, these projects are often at risk of failure due to misplaced expectations. However, this process can be considerably accelerated by utilizing open source datasets and models from related projects, which have been carried out in the past. Likewise, a number of open source, general-purpose tools exist that can help practitioners design and operate LECs in a near-optimal manner. These resources are important because they not only help ground expectations, they also provide LECs and other relevant stakeholders, including utilities and distribution system operators, with much-needed visibility on future energy and cash flows. This review provides a detailed overview of these open-source datasets, models and tools, and the many ways they can be utilized in optimally designing and operating real-world energy communities. It also highlights some of the most important limitations in currently available open source resources, and points to future research directions. \textcopyright 2021

Suggested Citation

  • H. Kazmi & Í. Munné-Collado & Fahad Mehmood & T.A. Syed & J. Driesen, 2021. "Towards Data-Driven Energy Communities: A Review of Open-Source Datasets, Models and Tools," Post-Print hal-04317812, HAL.
  • Handle: RePEc:hal:journl:hal-04317812
    DOI: 10.1016/j.rser.2021.111290
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dioba, Albina & Giannakopoulou, Amalia & Struthers, David & Stamos, Angelos & Dewitte, Siegfried & Fróes, Isabel, 2024. "Identifying key barriers to joining an energy community using AHP," Energy, Elsevier, vol. 299(C).
    2. Canaydin, Ada & Fu, Chun & Balint, Attila & Khalil, Mohamad & Miller, Clayton & Kazmi, Hussain, 2024. "Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04317812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.