IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04317814.html
   My bibliography  Save this paper

Energy Balances, Thermal Performance, and Heat Stress: Disentangling Occupant Behaviour and Weather Influences in a Dutch Net-Zero Energy Neighborhood

Author

Listed:
  • H. Kazmi
  • M. Keijsers
  • Fahad Mehmood

    (Métis Lab EM Normandie - EM Normandie - École de Management de Normandie)

  • C. Miller

Abstract

Decarbonizing the building stock is a central component of global climate change mitigation efforts. In practice, this decarbonization can be achieved by a variety of different measures, including improvements in building energy efficiency, electrification of energy demand to reduce reliance on fossil fuels, and installation of distributed (renewable) generation in conjunction with flexible storage. However, these large-scale, often disruptive changes to the built environment also raise a number of concerns, such as loss of occupant comfort exacerbated by climate change, and introduction of additional stressors on the distribution grid. In this paper, we demonstrate several conclusions using detailed sub-hourly data of two years (2019\textendash2020) collected from 40 homes in a recently refurbished net-zero energy neighborhood in the Netherlands. This paper shows that, in renovation projects like the case study, net-zero energy balances should be considered on a neighborhood, rather than building level to minimize worst case planning by accounting for occupant influences and seasonal effects. Furthermore, the energy flexibility and climate resilience in the buildings seems to be rather limited, as a result of energy efficiency improvements. While helpful in climate change mitigation efforts, the large seasonal differences in energy demand and generation imply that this evolution is perhaps sub-optimal from the grid perspective. The results illustrate that all homes in the study were net-zero energy over the two year period, sometimes net positive by up to a factor of three. This led to considerable excess generation especially during the summer months. In addition, it was found that indoor air temperature sensors in a number of buildings showed overheating beyond guideline thermal comfort temperature of 25°C, showing potential thermal comfort and heat stress for vulnerable occupants. These results motivate energy storage or modifications of the installed heat pumps to leverage summer excess generation while reducing the impact of summer heat waves. These findings should enable the Netherlands and other countries aiming to fully decarbonize the building stock formulate better, future-proof policies. \textcopyright 2022 Elsevier B.V.

Suggested Citation

  • H. Kazmi & M. Keijsers & Fahad Mehmood & C. Miller, 2022. "Energy Balances, Thermal Performance, and Heat Stress: Disentangling Occupant Behaviour and Weather Influences in a Dutch Net-Zero Energy Neighborhood," Post-Print hal-04317814, HAL.
  • Handle: RePEc:hal:journl:hal-04317814
    DOI: 10.1016/j.enbuild.2022.112020
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canaydin, Ada & Fu, Chun & Balint, Attila & Khalil, Mohamad & Miller, Clayton & Kazmi, Hussain, 2024. "Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data," Applied Energy, Elsevier, vol. 360(C).
    2. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    3. Kazmi, Hussain & Mehmood, Fahad & Shah, Maryam, 2024. "Quantifying residential energy flexibility potential for demand response programs using observational data from grid outages: Evidence from Pakistan," Energy Policy, Elsevier, vol. 188(C).
    4. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04317814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.