IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019219.html
   My bibliography  Save this article

Optimal operation of multi-integrated energy system based on multi-level Nash multi-stage robust

Author

Listed:
  • Zhang, Zongnan
  • Fedorovich, Kudashev Sergey

Abstract

To address the challenges faced by an integrated energy system (IES) during independent operation, such as high operating costs and significant uncertainties in electricity prices and source-load, a cooperative operation method based on a three-level Nash three-stage robust optimization is proposed for the Multi-integrated energy system (MIES). Firstly, the IES is enhanced by incorporating the coupling of multiple energy flows (electricity, heat, hydrogen, and gas) through the integration of an electric hydrogen module (EHM) and gas hydrogen doping combined heat and power (GHDCHP). Secondly, a Nash-Stackelberg-Nash game framework is constructed using game theory to accurately capture the interaction characteristics between the MIES and the Multi-PV prosumer (MPVP). Subsequently, a three-stage robust optimization model is developed for the IES, taking into full consideration the multiple uncertainties in electricity prices and source-load. This model is coupled with the Nash-Stackelberg-Nash game to propose a three-level Nash three-stage robust optimization model. Additionally, an ADMM algorithm coupling AOP-Looped C&CG is proposed to effectively solve the model. Finally, the effectiveness of the proposed method is validated through numerical examples.

Suggested Citation

  • Zhang, Zongnan & Fedorovich, Kudashev Sergey, 2024. "Optimal operation of multi-integrated energy system based on multi-level Nash multi-stage robust," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019219
    DOI: 10.1016/j.apenergy.2023.122557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Xiaolun & Wang, Yubin & Dong, Wei & Yang, Qiang & Sun, Siyang, 2023. "Optimal energy management of multiple electricity-hydrogen integrated charging stations," Energy, Elsevier, vol. 262(PB).
    2. Zhang, Honghui & Chen, Yuanyuan & Liu, Kuili & Dehan, Sim, 2022. "A novel power system scheduling based on hydrogen-based micro energy hub," Energy, Elsevier, vol. 251(C).
    3. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    2. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    2. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    3. Molin An & Xueshan Han & Tianguang Lu, 2024. "A Stochastic Model Predictive Control Method for Tie-Line Power Smoothing under Uncertainty," Energies, MDPI, vol. 17(14), pages 1-17, July.
    4. Xie, Xuehua & Qian, Tong & Li, Weiwei & Tang, Wenhu & Xu, Zhao, 2024. "An individualized adaptive distributed approach for fast energy-carbon coordination in transactive multi-community integrated energy systems considering power transformer loading capacity," Applied Energy, Elsevier, vol. 375(C).
    5. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    6. Innocent Kamwa & Leila Bagherzadeh & Atieh Delavari, 2023. "Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions," Energies, MDPI, vol. 16(11), pages 1-21, May.
    7. Dagoberto Martinez-Polo & David Romero-Quete & Camilo A. Cortes, 2024. "Consumer Theory-Based Primary Frequency Regulation in Multi-Microgrid Systems within a P2P Energy Management Framework," Sustainability, MDPI, vol. 16(15), pages 1-22, August.
    8. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    9. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    10. Yang, Yesen & Li, Zhengmao & Mandapaka, Pradeep V. & Lo, Edmond Y.M., 2023. "Risk-averse restoration of coupled power and water systems with small pumped-hydro storage and stochastic rooftop renewables," Applied Energy, Elsevier, vol. 339(C).
    11. Pan, Yushu & Ju, Liwei & Yang, Shenbo & Guo, Xinyu & Tan, Zhongfu, 2024. "A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity," Applied Energy, Elsevier, vol. 369(C).
    12. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue & Liu, Yun, 2023. "Risk assessment for cascading failures in regional integrated energy system considering the pipeline dynamics," Energy, Elsevier, vol. 270(C).
    13. Yu Sun & Zhiqiang Ma & Xiaomeng Chi & Jiaqi Duan & Mingxing Li & Asad Ullah Khan, 2024. "Decoding the Developmental Trajectory of Energy Trading in Power Markets through Bibliometric and Visual Analytics," Energies, MDPI, vol. 17(15), pages 1-23, July.
    14. Xia, Yuanxing & Xu, Qingshan & Fang, Jicheng & Tang, Rongchuan & Du, Pengwei, 2024. "Bipartite graph-based community-to-community matching in local energy market considering socially networked prosumers," Applied Energy, Elsevier, vol. 353(PB).
    15. Fang, Xiaolun & Wang, Yubin & Dong, Wei & Yang, Qiang & Sun, Siyang, 2023. "Optimal energy management of multiple electricity-hydrogen integrated charging stations," Energy, Elsevier, vol. 262(PB).
    16. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    17. Ji Li & Lei Xu & Lihua Wang & Yang Kou & Yingli Huo & Weile Liang, 2024. "Operation Optimization of Regional Integrated Energy Systems with Hydrogen by Considering Demand Response and Green Certificate–Carbon Emission Trading Mechanisms," Energies, MDPI, vol. 17(13), pages 1-24, June.
    18. Shao, Zhentong & Cao, Xiaoyu & Zhai, Qiaozhu & Guan, Xiaohong, 2023. "Risk-constrained planning of rural-area hydrogen-based microgrid considering multiscale and multi-energy storage systems," Applied Energy, Elsevier, vol. 334(C).
    19. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    20. Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.