IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923016094.html
   My bibliography  Save this article

Bipartite graph-based community-to-community matching in local energy market considering socially networked prosumers

Author

Listed:
  • Xia, Yuanxing
  • Xu, Qingshan
  • Fang, Jicheng
  • Tang, Rongchuan
  • Du, Pengwei

Abstract

The mutual influences among different energy prosumers caused by the socially connected relationship have not been modeled explicitly in the current local energy market. Hence, we first develop an iterative market clearing framework to bridge the data-driven and model-driven models of heterogeneous market participants. Then, we consider the behavior difficulty, communication channel, depth of information process, social influence, and observed peer effects in the multi-agent deep reinforcement learning (MADRL) framework in the data-driven models. Finally, we calculate the marginal market value of each C2C energy transaction with a linearized distribution network power flow model and formulate the C2C matching as a bipartite graph. We propose a recurrent Hungarian algorithm to solve the best matching schemes of C2C trading. Case studies verify that the distribution network power flow model considered in C2C energy trading successfully constrain the unit values of nodal voltages between 0.9 and 1.1. The power flow values in distribution network are constrained within the upper limits of transmission capacity for each branch. The finite iteration number of MADRL in hybrid market-clearing algorithm guarantees the normal P2P energy market operation. Moreover, the social influences for the P2P energy trading results are verified by comparing P2P trading results in different scenarios. Our proposed model can better depict the trading behaviors in communities.

Suggested Citation

  • Xia, Yuanxing & Xu, Qingshan & Fang, Jicheng & Tang, Rongchuan & Du, Pengwei, 2024. "Bipartite graph-based community-to-community matching in local energy market considering socially networked prosumers," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923016094
    DOI: 10.1016/j.apenergy.2023.122245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Ruan, Hebin & Gao, Hongjun & Qiu, Haifeng & Gooi, Hoay Beng & Liu, Junyong, 2023. "Distributed operation optimization of active distribution network with P2P electricity trading in blockchain environment," Applied Energy, Elsevier, vol. 331(C).
    3. Liu, Junhong & Long, Qinfei & Liu, Rong-Peng & Liu, Wenjie & Hou, Yunhe, 2023. "Online distributed optimization for spatio-temporally constrained real-time peer-to-peer energy trading," Applied Energy, Elsevier, vol. 331(C).
    4. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    5. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Sun, Chao & Liu, Yun & Li, Yuanzheng & Lin, Shunjiang & Gooi, Hoay Beng & Zhu, Jizhong, 2023. "Network-aware P2P multi-energy trading in decentralized electric-heat systems," Applied Energy, Elsevier, vol. 345(C).
    7. Lim, Xin-Le & Lam, Wei-Haur & Hashim, Roslan, 2015. "Feasibility of marine renewable energy to the Feed-in Tariff system in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 708-719.
    8. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Alejandro Pena-Bello & David Parra & Mario Herberz & Verena Tiefenbeck & Martin K. Patel & Ulf J. J. Hahnel, 2022. "Integration of prosumer peer-to-peer trading decisions into energy community modelling," Nature Energy, Nature, vol. 7(1), pages 74-82, January.
    10. Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
    11. Kimberly S. Wolske & Kenneth T. Gillingham & P. Wesley Schultz, 2020. "Peer influence on household energy behaviours," Nature Energy, Nature, vol. 5(3), pages 202-212, March.
    12. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    13. Dukovska, Irena & Slootweg, J.G. (Han) & Paterakis, Nikolaos G., 2023. "Introducing user preferences for peer-to-peer electricity trading through stochastic multi-objective optimization," Applied Energy, Elsevier, vol. 338(C).
    14. Lee, Won-Poong & Han, Dongjun & Won, Dongjun, 2022. "Grid-Oriented Coordination Strategy of Prosumers Using Game-theoretic Peer-to-Peer Trading Framework in Energy Community," Applied Energy, Elsevier, vol. 326(C).
    15. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haoyang & Zhan, Sen & Kok, Koen & Paterakis, Nikolaos G., 2024. "Establishing a hierarchical local market structure using multi-cut Benders decomposition," Applied Energy, Elsevier, vol. 363(C).
    2. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hahnel, Ulf J.J. & Fell, Michael J., 2022. "Pricing decisions in peer-to-peer and prosumer-centred electricity markets: Experimental analysis in Germany and the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Zhang, Qian & Qin, Tianxi & Wu, Jiaqi & Hao, Ruiyi & Su, Xin & Li, Chunyan, 2024. "Synergistic operation strategy of electric-hydrogen charging station alliance based on differentiated characteristics," Energy, Elsevier, vol. 304(C).
    3. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    4. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    5. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    6. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    8. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    9. Gorbatcheva, Anna & Watson, Nicole & Schneiders, Alexandra & Shipworth, David & Fell, Michael J., 2024. "Defining characteristics of peer-to-peer energy trading, transactive energy, and community self-consumption: A review of literature and expert perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Dukovska, Irena & Slootweg, J.G. (Han) & Paterakis, Nikolaos G., 2023. "Introducing user preferences for peer-to-peer electricity trading through stochastic multi-objective optimization," Applied Energy, Elsevier, vol. 338(C).
    11. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    12. Zhang, Chenxi & Yang, Yi & Wang, Yunqi & Qiu, Jing & Zhao, Junhua, 2024. "Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries," Applied Energy, Elsevier, vol. 358(C).
    13. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    14. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    15. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    16. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    17. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    18. Moradi, Amir & Salehi, Javad & Shafie-khah, Miadreza, 2024. "An interactive framework for strategic participation of a price-maker energy hub in the local gas and power markets based on the MPEC method," Energy, Elsevier, vol. 307(C).
    19. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    20. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923016094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.