IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics030626192301855x.html
   My bibliography  Save this article

Ratcheting assessment of the catalyst layer in polymer electrolyte membrane fuel cells considering thermal-mechanical-humidity cycling

Author

Listed:
  • Ding, Peishan
  • Zheng, Xiaotao
  • Chen, Haofeng
  • Tu, Shantung

Abstract

The properties of polymer electrolyte membrane fuel cells (PEMFCs) are highly affected by the catalyst layer (CL). However, the cyclic swelling and shrinking of the ionomer caused by the change of temperature and relative humidity (RH) combined with external random mechanical loads may lead to electrochemical activity degradation through cyclic plasticity accumulation. In this study, a theoretical model to assess the ratcheting limit of the CL for PEFMCs subjected to thermal-mechanical-humidity cycling is developed based on linear matching method (LMM). The influences of embedded depth of Pt/C particle, cyclic temperature or RH modes, as well as the random reaction force are considered by the proposed method. The ratcheting limits of CL are achieved under various thermal-mechanical-humidity cycling and verified by step-by-step simulation. Moreover, a simplified prediction model is established to evaluate the ratcheting limits under the combined temperature and RH cycling. It is of interest that the ratcheting limit under the pure normal force is almost 3 time of that under the pure tangential force under the same thermal-humidity cycling. Furthermore, the accumulated plastic strain occurs near the junction area causing the debonding of Pt/C particle from the ionomer under thermal-mechanical-humidity cycling, which agrees well with the microscopic observation. Based on ratcheting assessment results obtained by the proposed method, the reliability and durability of PEMFCs can be improved by increasing the affinity between Pt/C and ionomer, decreasing the size of gas pore and inhibiting the tangential force in the CL.

Suggested Citation

  • Ding, Peishan & Zheng, Xiaotao & Chen, Haofeng & Tu, Shantung, 2024. "Ratcheting assessment of the catalyst layer in polymer electrolyte membrane fuel cells considering thermal-mechanical-humidity cycling," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301855x
    DOI: 10.1016/j.apenergy.2023.122491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301855X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Suhui & Qin, Yanzhou & Liu, Yuwen & Sun, Liancheng & Guo, Qiaoyu & Yin, Yan, 2022. "Delamination evolution of PEM fuel cell membrane/CL interface under asymmetric RH cycling and CL crack location," Applied Energy, Elsevier, vol. 310(C).
    2. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    3. Islam, Mohammad Rafiqul & Shabani, Bahman & Rosengarten, Gary, 2016. "Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach," Applied Energy, Elsevier, vol. 178(C), pages 660-671.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anggito P. Tetuko & Bahman Shabani & John Andrews, 2018. "Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    3. Soopee, Asif & Sasmito, Agus P. & Shamim, Tariq, 2019. "Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 233, pages 300-311.
    4. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    5. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    6. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    7. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.
    8. Zhou, Xuejun & Tang, Sheng & Yin, Yan & Sun, Shuihui & Qiao, Jinli, 2016. "Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 459-467.
    9. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    10. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    11. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    12. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    13. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    14. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    15. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    16. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    17. Komini Babu, S. & Spernjak, D. & Dillet, J. & Lamibrac, A. & Maranzana, G. & Didierjean, S. & Lottin, O. & Borup, R.L. & Mukundan, R., 2019. "Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation," Applied Energy, Elsevier, vol. 254(C).
    18. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    19. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    20. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301855x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.