IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924011024.html
   My bibliography  Save this article

A framework of data assimilation for wind flow fields by physics-informed neural networks

Author

Listed:
  • Yan, Chang
  • Xu, Shengfeng
  • Sun, Zhenxu
  • Lutz, Thorsten
  • Guo, Dilong
  • Yang, Guowei

Abstract

Various types of measurement techniques, such as Light Detection and Ranging (LiDAR) devices, anemometers, and wind vanes, are extensively utilized in wind energy to characterize the inflow. However, these methods typically gather data at limited points within local wind fields, capturing only a fraction of the wind field’s characteristics at wind turbine sites, thus hindering detailed wind field analysis. This study introduces a framework using Physics-informed Neural Networks (PINNs) to assimilate diverse sensor data types. This includes line-of-sight (LoS) wind speed, velocity magnitude and direction, velocity components, and pressure. Moreover, the parameterized Navier–Stokes (N–S) equations are integrated as physical constraints, ensuring that the neural networks accurately represent atmospheric flow dynamics. The framework accounts for the turbulent nature of atmospheric boundary layer flow by including artificial eddy viscosity in the network outputs, enhancing the model’s ability to learn and accurately depict large-scale flow structures. The reconstructed flow field and the effective wind speed are in good agreement with the actual data. Furthermore, a transfer learning strategy is employed for the online deployment of pre-trained PINN, which requires less time than that of the actual physical flow. This capability allows the framework to reconstruct wind flow fields in real time based on live data. In the demo cases, the maximum error between the effective wind speed reconstructed online and the actual value at the wind turbine site is only 3.7%. The proposed data assimilation framework provides a universal tool for reconstructing spatiotemporal wind flow fields using various measurement data. Additionally, it presents a viable approach for the online assimilation of real-time measurements. To facilitate the utilization of wind energy, our framework’s source code is openly accessible.

Suggested Citation

  • Yan, Chang & Xu, Shengfeng & Sun, Zhenxu & Lutz, Thorsten & Guo, Dilong & Yang, Guowei, 2024. "A framework of data assimilation for wind flow fields by physics-informed neural networks," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011024
    DOI: 10.1016/j.apenergy.2024.123719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    2. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    3. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
    4. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Wang, Tongguang & Zhu, Chunling, 2020. "Numerical investigations into the idealized diurnal cycle of atmospheric boundary layer and its impact on wind turbine's power performance," Renewable Energy, Elsevier, vol. 145(C), pages 419-427.
    5. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    6. Bangga, Galih & Lutz, Thorsten, 2021. "Aerodynamic modeling of wind turbine loads exposed to turbulent inflow and validation with experimental data," Energy, Elsevier, vol. 223(C).
    7. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    8. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    9. Gao, Xiaoxia & Wang, Tengyuan & Li, Bingbing & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Zhao, Fei, 2019. "Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data," Applied Energy, Elsevier, vol. 255(C).
    10. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    11. Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
    12. Doubrawa, Paula & Churchfield, Matthew J. & Godvik, Marte & Sirnivas, Senu, 2019. "Load response of a floating wind turbine to turbulent atmospheric flow," Applied Energy, Elsevier, vol. 242(C), pages 1588-1599.
    13. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
    2. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    3. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    4. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    5. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    6. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    7. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
    8. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    9. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
    10. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    11. Huang, Xiaojia & Wang, Chen & Zhang, Shenghui, 2024. "Research and application of a Model selection forecasting system for wind speed and theoretical power generation in wind farms based on classification and wind conversion," Energy, Elsevier, vol. 293(C).
    12. Zhao, Ning & Su, Yi & Dai, Xianxing & Jia, Shaomin & Wang, Xuewei, 2024. "A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction," Applied Energy, Elsevier, vol. 369(C).
    13. Sergey Obukhov & Emad M. Ahmed & Denis Y. Davydov & Talal Alharbi & Ahmed Ibrahim & Ziad M. Ali, 2021. "Modeling Wind Speed Based on Fractional Ornstein-Uhlenbeck Process," Energies, MDPI, vol. 14(17), pages 1-15, September.
    14. Duan, Jikai & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Zuo, Hongchao & Bai, Yulong & Chen, Bolong, 2022. "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error," Renewable Energy, Elsevier, vol. 200(C), pages 788-808.
    15. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
    16. Jiang, Tieliu & Zhao, Yuze & Wang, Shengwen & Zhang, Lidong & Li, Guohao, 2024. "Aerodynamic characterization of a H-Darrieus wind turbine with a Drag-Disturbed Flow device installation," Energy, Elsevier, vol. 292(C).
    17. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    18. Mohanasundaram Anthony & Valsalal Prasad & Kannadasan Raju & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2020. "Design of Rotor Blades for Vertical Axis Wind Turbine with Wind Flow Modifier for Low Wind Profile Areas," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    19. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    20. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.