IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1326-d1092306.html
   My bibliography  Save this article

Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques

Author

Listed:
  • Daniel Sanin-Villa

    (Departamento de Mecatrónica y Electromecánica, Instituto Tecnológico Metropolitano, Medellín 050036, Colombia)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia)

  • Luis Fernando Grisales-Noreña

    (Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile)

Abstract

Thermoelectric generators (TEGs) have gained significant interest as a sustainable energy source, due to their ability to convert thermal energy into electrical energy through the Seebeck effect. However, the power output of TEGs is highly dependent on the thermoelectric material properties and operational conditions. Accurate modeling and parameter estimation are essential for optimizing and designing TEGs, as well as for integrating them into smart grids to meet fluctuating energy demands. This work examines the challenges of accurate modeling and parameter estimation of TEGs and explores various optimization metaheuristics techniques to find TEGs parameters in real applications from experimental conditions. The paper stresses the importance of determining the properties of TEGs with precision and using parameter estimation as a technique for determining the optimal values for parameters in a TEG mathematical model that represent the actual behavior of a thermoelectric module. This methodological approach can improve TEG performance and aid in efficient energy supply and demand management, thus reducing the reliance on traditional fossil fuel-based power generation.

Suggested Citation

  • Daniel Sanin-Villa & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1326-:d:1092306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Lei & Li, Huaqi & Chen, Sen & Tian, Xiaoyan & Kang, Xiaoya & Jiang, Xinbiao & Qiu, Suizheng, 2020. "Optimization analysis of a segmented thermoelectric generator based on genetic algorithm," Renewable Energy, Elsevier, vol. 156(C), pages 710-718.
    2. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2021. "Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    3. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    4. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
    5. Daniel Sanin-Villa, 2022. "Recent Developments in Thermoelectric Generation: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Meng, Jing-Hui & Zhang, Xin-Xin & Wang, Xiao-Dong, 2014. "Multi-objective and multi-parameter optimization of a thermoelectric generator module," Energy, Elsevier, vol. 71(C), pages 367-376.
    7. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    8. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    9. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Ricardo Alberto Hincapié-Isaza & Mauricio Granada Echeverri & Alberto-Jesus Perea-Moreno, 2021. "Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    10. Abdelkader Rjafallah & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2022. "Legs Geometry Influence on the Performance of the Thermoelectric Module," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    11. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    12. Torrecilla, Marcos Compadre & Montecucco, Andrea & Siviter, Jonathan & Strain, Andrew & Knox, Andrew R., 2018. "Transient response of a thermoelectric generator to load steps under constant heat flux," Applied Energy, Elsevier, vol. 212(C), pages 293-303.
    13. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    14. Velásquez, Laura & Posada, Alejandro & Chica, Edwin, 2023. "Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine," Applied Energy, Elsevier, vol. 330(PB).
    15. Ju, Chengjian & Dui, Guansuo & Zheng, Helen Hao & Xin, Libiao, 2017. "Revisiting the temperature dependence in material properties and performance of thermoelectric materials," Energy, Elsevier, vol. 124(C), pages 249-257.
    16. Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    17. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Sanin-Villa & Miguel Angel Rodriguez-Cabal & Luis Fernando Grisales-Noreña & Mario Ramirez-Neria & Juan C. Tejada, 2024. "A Comparative Analysis of Metaheuristic Algorithms for Enhanced Parameter Estimation on Inverted Pendulum System Dynamics," Mathematics, MDPI, vol. 12(11), pages 1-17, May.
    2. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes, 2023. "A Methodological Approach of Predicting the Performance of Thermoelectric Generators with Temperature-Dependent Properties and Convection Heat Losses," Energies, MDPI, vol. 16(20), pages 1-24, October.
    3. Santiago Bustamante-Mesa & Jorge W. Gonzalez-Sanchez & Sergio D. Saldarriaga-Zuluaga & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2024. "Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection," Energies, MDPI, vol. 17(2), pages 1-20, January.
    4. Daniel Sanin-Villa & Oscar Danilo Montoya & Walter Gil-González & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2023. "Parameter Estimation of a Thermoelectric Generator by Using Salps Search Algorithm," Energies, MDPI, vol. 16(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
    2. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
    3. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    4. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    5. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    6. Daniel Sanin-Villa & Oscar Danilo Montoya & Walter Gil-González & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2023. "Parameter Estimation of a Thermoelectric Generator by Using Salps Search Algorithm," Energies, MDPI, vol. 16(11), pages 1-16, May.
    7. Demeke, Wabi & Ryu, Byungki & Ryu, Seunghwa, 2024. "Machine learning-based optimization of segmented thermoelectric power generators using temperature-dependent performance properties," Applied Energy, Elsevier, vol. 355(C).
    8. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes, 2023. "A Methodological Approach of Predicting the Performance of Thermoelectric Generators with Temperature-Dependent Properties and Convection Heat Losses," Energies, MDPI, vol. 16(20), pages 1-24, October.
    9. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    10. Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
    11. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    12. Xu, Aoqi & Xie, Changjun & Xie, Liping & Zhu, Wenchao & Xiong, Binyu & Gooi, Hoay Beng, 2024. "Performance prediction and optimization of annular thermoelectric generators based on a comprehensive surrogate model," Energy, Elsevier, vol. 290(C).
    13. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    14. Yusuf, Aminu & Ballikaya, Sedat, 2022. "Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator," Energy, Elsevier, vol. 241(C).
    15. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    16. Ge, Ya & Xiao, Qiyin & Wang, Wenhao & Lin, Yousheng & Huang, Si-Min, 2022. "Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm," Renewable Energy, Elsevier, vol. 200(C), pages 136-145.
    17. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    18. Liu, Hai-Bo & Wang, Shuo-Lin & Yang, Yan-Ru & Chen, Wei-Hsin & Wang, Xiao-Dong, 2020. "Theoretical analysis of performance of variable cross-section thermoelectric generators: Effects of shape factor and thermal boundary conditions," Energy, Elsevier, vol. 201(C).
    19. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    20. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1326-:d:1092306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.