IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics030626192301557x.html
   My bibliography  Save this article

Results from pilot-scale CO2 capture testing using 30 wt% MEA at a Waste-to-Energy facility: Optimisation through parametric analysis

Author

Listed:
  • Vinjarapu, Sai Hema Bhavya
  • Neerup, Randi
  • Larsen, Anders Hellerup
  • Jørsboe, Jens Kristian
  • Villadsen, Sebastian Nis Bay
  • Jensen, Søren
  • Karlsson, Jakob Lindkvist
  • Kappel, Jannik
  • Lassen, Henrik
  • Blinksbjerg, Peter
  • von Solms, Nicolas
  • Fosbøl, Philip Loldrup

Abstract

Post-combustion carbon capture is a well-established technology for removing CO2 from industrial emissions. However, research is still underway to optimise the process and make it more energy efficient. The current work aims to present the results from pilot-scale (with a capacity of 1tonne CO2/day) studies of CO2 capture conducted at Amager Bakke, a Waste-to-Energy facility in Copenhagen, Denmark. The pilot operation is fully automated, and the process control structure helps achieve multiple steady states at regular intervals. In addition, the pilot is capable of several configurations which can assist in optimising the energy required for solvent regeneration. The current work discusses the base case configuration of the pilot plant by employing 30wt% MEA as the solvent. Experiments were conducted to analyse the influence of reboiler duty, solvent flow rate, and gas flow rate on the pilot’s performance. The influence of these parameters on several aspects is discussed in detail, and recommendations for the optimal operation of such plants are provided. An optimum specific reboiler duty of 3.46GJ/tonne CO2 is obtained at a solvent flow rate of 306kg/h, flue gas flow rate of 113kg/h, and reboiler duty of 17.5kW excluding heat loss.

Suggested Citation

  • Vinjarapu, Sai Hema Bhavya & Neerup, Randi & Larsen, Anders Hellerup & Jørsboe, Jens Kristian & Villadsen, Sebastian Nis Bay & Jensen, Søren & Karlsson, Jakob Lindkvist & Kappel, Jannik & Lassen, Henr, 2024. "Results from pilot-scale CO2 capture testing using 30 wt% MEA at a Waste-to-Energy facility: Optimisation through parametric analysis," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s030626192301557x
    DOI: 10.1016/j.apenergy.2023.122193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301557X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Page, S.C. & Williamson, A.G. & Mason, I.G., 2009. "Carbon capture and storage: Fundamental thermodynamics and current technology," Energy Policy, Elsevier, vol. 37(9), pages 3314-3324, September.
    2. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Yingjie & Li, Ting & Bhatti, Ali Hassan & Qu, Jiaqi & Zhou, Xin & Luo, Li & Barzagli, Francesco & Li, Chao'en & Zhang, Rui, 2024. "Development of one-step synthesized SO42−/ZrO2-fly ash (SZ@FA) solid acid catalysts for energy-efficient sorbent regeneration in CO2 capture processes," Applied Energy, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yidi Wan & Chengzao Jia & Wen Zhao & Lin Jiang & Zhuxin Chen, 2023. "Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO 2 –Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO 2 Storage Efficiency," Energies, MDPI, vol. 16(3), pages 1-26, February.
    2. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    3. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    4. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    5. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    6. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Maxwell Brown & Matthew Irish & Daniel Steinberg & Tamar Moss & Daniel P. Cherney & Travis Shultz & David Morgan & Alexander Zoelle & Thomas Schmitt, 2024. "Representing Carbon Dioxide Transport and Storage Network Investments within Power System Planning Models," Energies, MDPI, vol. 17(15), pages 1-24, July.
    8. Miao, Yuang & Lu, Huixia & Cui, Shizhang & Zhang, Xu & Zhang, Yusheng & Song, Xinwang & Cheng, Haiying, 2024. "CO2 emissions change in Tianjin: The driving factors and the role of CCS," Applied Energy, Elsevier, vol. 353(PA).
    9. Beccarello, Massimo & Di Foggia, Giacomo, 2023. "Meeting decarbonization targets: Techno-economic insights from the Italian scenario," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2.
    10. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    11. Gunawan, Tubagus Aryandi & Luo, Hongxi & Greig, Chris & Larson, Eric, 2024. "Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters," Applied Energy, Elsevier, vol. 359(C).
    12. Paltsev, Sergey & Gurgel, Angelo & Morris, Jennifer & Chen, Henry & Dey, Subhrajit & Marwah, Sumita, 2022. "Economic analysis of the hard-to-abate sectors in India," Energy Economics, Elsevier, vol. 112(C).
    13. Massimo Beccarello & Giacomo Di Foggia, 2023. "Review and Perspectives of Key Decarbonization Drivers to 2030," Energies, MDPI, vol. 16(3), pages 1-13, January.
    14. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    15. Alberto Maria Gambelli, 2023. "CCUS Strategies as Most Viable Option for Global Warming Mitigation," Energies, MDPI, vol. 16(10), pages 1-4, May.
    16. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    17. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).
    18. Tan, Zhizhou & Huang, Hui & Lin, Boqiang, 2024. "Impact assessment of the residual lifespan of coal-fired power plants on the investment risk of carbon capture and storage retrofit," Energy, Elsevier, vol. 307(C).
    19. Piana Monsur Mindia & Md Qamruzzaman & Nusrat Farzana, 2024. "Exploring the Impact of Good Governance and Innovation on Export Earnings, Clean Energy, Remittances, and Zero Carbon Emissions in Sub-Saharan African Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 265-284, July.
    20. Golrokh Sani, Ahmad & Najafi, Hamidreza & Azimi, Seyedeh Shakiba, 2022. "Dynamic thermal modeling of the refrigerated liquified CO2 tanker in carbon capture, utilization, and storage chain: A truck transport case study," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s030626192301557x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.