IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5945-d1530244.html
   My bibliography  Save this article

Efficient Simulator for P2P Energy Trading: Customizable Bid Preferences for Trading Agents

Author

Listed:
  • Yasuhiro Takeda

    (Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
    TRENDE Inc., 1-16-7 Higashikanda, Chiyoda-ku, Tokyo 101-0031, Japan)

  • Yosuke Suzuki

    (Sumitomo Mitsui Trust Bank, Ltd., 1-4-1 Marunouchi, Chiyoda-ku, Tokyo 100-8233, Japan)

  • Kota Fukamachi

    (Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan)

  • Yuji Yamada

    (Institute of Business Sciences, University of Tsukuba, 3-29-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan)

  • Kenji Tanaka

    (Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan)

Abstract

Given the accelerating global movement towards decarbonization, the importance of promoting renewable energy (RE) adoption and ensuring efficient transactions in energy markets is increasing worldwide. However, renewable energy sources, including photovoltaic (PV) systems, are subject to output fluctuations due to weather conditions, requiring large-scale backup power to balance supply and demand. This makes trading electricity from large-scale PV systems connected to the existing grid challenging. To address this, peer-to-peer (P2P) energy markets where individual prosumers can trade excess power within their local communities have been garnering attention. This study introduces a simulator for P2P energy trading, designed to account for the diverse behaviors and objectives of participants within a market mechanism. The simulator incorporates two risk aversion parameters: one related to transaction timing, expressed through order prices, and another related to forecast errors, managed by adjusting trade volumes. This allows participants to customize their trading strategies, resulting in more realistic analyses of trading outcomes. To explore the effects of these risk aversion settings, we conduct a case study with 120 participants, including both consumers and prosumers, using real data from household smart meters collected on sunny and cloudy days. Our analysis shows that participants with higher aversion to transaction timing tend to settle trades earlier, often resulting in unnecessary transactions due to forecast inaccuracies. Furthermore, trading outcomes are significantly influenced by weather conditions: sunny days typically benefit buyers through lower settlement prices, while cloudy days favor sellers who execute trades closer to their actual needs. These findings demonstrate the trade-off between early execution and forecast error losses, emphasizing the simulator’s ability to analyze trading outcomes while accounting for participant risk aversion preferences.

Suggested Citation

  • Yasuhiro Takeda & Yosuke Suzuki & Kota Fukamachi & Yuji Yamada & Kenji Tanaka, 2024. "Efficient Simulator for P2P Energy Trading: Customizable Bid Preferences for Trading Agents," Energies, MDPI, vol. 17(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5945-:d:1530244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    2. Chen, Kaixuan & Lin, Jin & Song, Yonghua, 2019. "Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model," Applied Energy, Elsevier, vol. 242(C), pages 1121-1133.
    3. Izanlo, Ali & Sheikholeslami, Abdolreza & Gholamian, S. Asghar & Kazemi, Mohammad Verij & Hosseini, S. Naghi, 2024. "A combination of MILP and game theory methods for P2P energy trading by considering network constraints," Applied Energy, Elsevier, vol. 374(C).
    4. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    5. Lee, Won-Poong & Han, Dongjun & Won, Dongjun, 2022. "Grid-Oriented Coordination Strategy of Prosumers Using Game-theoretic Peer-to-Peer Trading Framework in Energy Community," Applied Energy, Elsevier, vol. 326(C).
    6. Li, Zhenpeng & Ma, Tao, 2020. "Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic," Applied Energy, Elsevier, vol. 278(C).
    7. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    3. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    4. Hutty, Timothy D. & Brown, Solomon, 2024. "P2P trading of heat and power via a continuous double auction," Applied Energy, Elsevier, vol. 369(C).
    5. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    6. Bochun Zhan & Changsen Feng & Zhemin Lin & Xiaoyu Shao & Fushuan Wen, 2023. "Peer-to-Peer Energy Trading among Prosumers with Voltage Regulation Services Provision," Energies, MDPI, vol. 16(14), pages 1-22, July.
    7. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    8. Liao, Wei & Xiao, Fu & Li, Yanxue & Peng, Jinqing, 2024. "Comparative study on electricity transactions between multi-microgrid: A hybrid game theory-based peer-to-peer trading in heterogeneous building communities considering electric vehicles," Applied Energy, Elsevier, vol. 367(C).
    9. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    10. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Markovska, Natasa & Georghiou, George E., 2022. "Virtual net-billing: A fair energy sharing method for collective self-consumption," Energy, Elsevier, vol. 254(PB).
    11. Shama Naz Islam & Aiswarya Sivadas, 2022. "Optimisation of Buyer and Seller Preferences for Peer-to-Peer Energy Trading in a Microgrid," Energies, MDPI, vol. 15(12), pages 1-29, June.
    12. Bidan Zhang & Yang Du & Xiaoyang Chen & Eng Gee Lim & Lin Jiang & Ke Yan, 2022. "Potential Benefits for Residential Building with Photovoltaic Battery System Participation in Peer-to-Peer Energy Trading," Energies, MDPI, vol. 15(11), pages 1-21, May.
    13. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    14. García-Muñoz, Fernando & Dávila, Sebastián & Quezada, Franco, 2023. "A Benders decomposition approach for solving a two-stage local energy market problem under uncertainty," Applied Energy, Elsevier, vol. 329(C).
    15. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    16. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    17. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    19. Yang, Jiawei & Paudel, Amrit & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2021. "A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 298(C).
    20. Seyedhossein, Seyed Saeed & Moeini-Aghtaie, Moein, 2022. "Risk management framework of peer-to-peer electricity markets," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5945-:d:1530244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.