IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i10d10.1057_s41274-016-0020-7.html
   My bibliography  Save this article

Resource allocation based on cost efficiency

Author

Listed:
  • Akram Dehnokhalaji

    (Aalto University
    Kharazmi University)

  • Mojtaba Ghiyasi

    (University of Southern Denmark
    Shahrood University of Technology)

  • Pekka Korhonen

    (Aalto University)

Abstract

In this paper, we consider a resource allocation (RA) problem and develop an approach based on cost (overall) efficiency. The aim is to allocate some inputs among decision making units (DMUs) in such way that their cost efficiencies improve or stay unchanged after RA. We formulate a multi-objective linear programming problem using two different strategies. First, we propose an RA model which keeps the cost efficiencies of units unchanged. This is done assuming fixed technical and allocative efficiencies. The approach is based on the assumption that the decision maker (DM) may not have big changes in the structure of DMUs within a short term. The second strategy does not impose any restrictions on technical and allocative efficiencies. It guarantees that none of the cost efficiencies of DMUs get worse after RA, and the improvement for units is possible if it is feasible and beneficial. Two numerical examples and an empirical illustration are also provided.

Suggested Citation

  • Akram Dehnokhalaji & Mojtaba Ghiyasi & Pekka Korhonen, 2017. "Resource allocation based on cost efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1279-1289, October.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:10:d:10.1057_s41274-016-0020-7
    DOI: 10.1057/s41274-016-0020-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-016-0020-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-016-0020-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    2. Cook, Wade D. & Kress, Moshe, 1999. "Characterizing an equitable allocation of shared costs: A DEA approach," European Journal of Operational Research, Elsevier, vol. 119(3), pages 652-661, December.
    3. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    4. Boaz Golany & Eran Tamir, 1995. "Evaluating Efficiency-Effectiveness-Equality Trade-Offs: A Data Envelopment Analysis Approach," Management Science, INFORMS, vol. 41(7), pages 1172-1184, July.
    5. Lei Fang & C-Q Zhang, 2008. "Resource allocation based on the DEA model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1136-1141, August.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Pekka Korhonen & Jyrki Wallenius, 1988. "A pareto race," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 615-623, December.
    8. Joe Zhu, 2014. "DEA Cross Efficiency," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 4, pages 61-92, Springer.
    9. Nasim Nasrabadi & Akram Dehnokhalaji & Narsis Kiani & Pekka Korhonen & Jyrki Wallenius, 2012. "Resource allocation for performance improvement," Annals of Operations Research, Springer, vol. 196(1), pages 459-468, July.
    10. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    11. Athanassopoulos, Antreas D., 1995. "Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning: Allocating central grants to the Greek local authorities," European Journal of Operational Research, Elsevier, vol. 87(3), pages 535-550, December.
    12. Antreas D. Athanassopoulos, 1998. "Decision Support for Target-Based Resource Allocation of Public Services in Multiunit and Multilevel Systems," Management Science, INFORMS, vol. 44(2), pages 173-187, February.
    13. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    14. Asmild, Mette & Paradi, Joseph C. & Reese, David N. & Tam, Fai, 2007. "Measuring overall efficiency and effectiveness using DEA," European Journal of Operational Research, Elsevier, vol. 178(1), pages 305-321, April.
    15. Li, Yongjun & Yang, Feng & Liang, Liang & Hua, Zhongsheng, 2009. "Allocating the fixed cost as a complement of other cost inputs: A DEA approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 389-401, August.
    16. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edmund Mallinguh & Christopher Wasike & Zeman Zoltan, 2020. "Technology Acquisition and SMEs Performance, the Role of Innovation, Export and the Perception of Owner-Managers," JRFM, MDPI, vol. 13(11), pages 1-19, October.
    2. Zhang, Chonghui & Wang, Zhen & Su, Weihua & Dalia, Streimikiene, 2024. "Differentiated power rationing or seasonal power price? Optimal power allocation solution for Chinese industrial enterprises based on the CSW-DEA model," Applied Energy, Elsevier, vol. 353(PB).
    3. Sheng Dai & Natalia Kuosmanen & Timo Kuosmanen & Juuso Liesio, 2023. "Optimal resource allocation: Convex quantile regression approach," Papers 2311.06590, arXiv.org.
    4. Contreras, I. & Lozano, S., 2022. "Size efficiency, splits and merger gains, and centralized resource reallocation of Spanish public universities," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    5. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    6. Mostafa Davtalab-Olyaie & Hadis Mahmudi-Baram & Masoud Asgharian, 2023. "Measuring individual efficiency and unit influence in centrally managed systems," Annals of Operations Research, Springer, vol. 321(1), pages 139-164, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Soltanifar & Farhad Hosseinzadeh Lotfi & Hamid Sharafi & Sebastián Lozano, 2022. "Resource allocation and target setting: a CSW–DEA based approach," Annals of Operations Research, Springer, vol. 318(1), pages 557-589, November.
    2. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    3. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    4. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    5. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    6. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    7. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    8. Jie Wu & Qingyuan Zhu & Wade D Cook & Joe Zhu, 2016. "Best cooperative partner selection and input resource reallocation using DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1221-1237, September.
    9. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    10. Chih-Ching Yang, 2017. "Measuring health indicators and allocating health resources: a DEA-based approach," Health Care Management Science, Springer, vol. 20(3), pages 365-378, September.
    11. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    12. Dai, Qianzhi & Li, Yongjun & Lei, Xiyang & Wu, Dengsheng, 2021. "A DEA-based incentive approach for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 675-686.
    13. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    14. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    15. Yingying Shao & Gongbing Bi & Feng Yang & Qiong Xia, 2018. "Resource allocation for branch network system with considering heterogeneity based on DEA method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1005-1025, December.
    16. Xiong, Xi & Yang, Guo-liang & Zhou, De-qun & Wang, Zi-long, 2022. "How to allocate multi-period research resources? Centralized resource allocation for public universities in China using a parallel DEA-based approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    17. HOSSEINZADEH LOTFI, Farhad & HATAMI-MARBINI, Adel & AGRELL, Per & GHOLAMI, Kobra, 2013. "Centralized resource reduction and target setting under DEA control," LIDAM Discussion Papers CORE 2013005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Jiasen Sun & Yelin Fu & Xiang Ji & Ray Y. Zhong, 2017. "Allocation of emission permits using DEA-game-theoretic model," Operational Research, Springer, vol. 17(3), pages 867-884, October.
    19. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    20. Arocena, Pablo & Cabasés, Fermín & Pascual, Pedro, 2022. "A centralized directional distance model for efficient and horizontally equitable grants allocation to local governments," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:10:d:10.1057_s41274-016-0020-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.