IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923011030.html
   My bibliography  Save this article

A fast thermal simulation and dynamic feedback control framework for lithium-ion batteries

Author

Listed:
  • Chen, Quanyi
  • Zhang, Xuan
  • Nie, Pengbo
  • Zhang, Siwei
  • Wei, Guodan
  • Sun, Hongbin

Abstract

The temperature has a significant effect on the lifespan and the safety of the batteries which are one of the core components of electric vehicles. A well-designed battery thermal management system is required to adjust the temperature of the batteries within an appropriate range for thermal safety, and further minimize the energy consumption for energy savings. However, these two goals form a tradeoff. Typically, increased energy consumption for cooling results in safer batteries thermally. To examine this tradeoff, firstly, a linear electro-thermal model is built to evaluate the thermal dynamics of the operating battery-cooling module. The linear model accounts for the heat generation based on internal resistance, and the heat transfer based on a resistance–capacitance model. Such linear model reduces the computation of the model simulation to dynamically catch up with the change of temperatures and to implement control strategies on the cooling system in a short time. Based on this model, a model predictive control (MPC) framework is proposed to design thermal control methods, which considers both thermal safety and energy saving. The weight of these two goals can be adjusted to explore the tradeoff between them. Finally, we investigate the performance of the MPC framework by applying the Urban Dynamometer Driving Schedule (UDDS) to the battery module. The simulation results show that the electro-thermal model is effective for battery thermal dynamics evaluation. Additionally, the tradeoff between the two goals is demonstrated by the simulation.

Suggested Citation

  • Chen, Quanyi & Zhang, Xuan & Nie, Pengbo & Zhang, Siwei & Wei, Guodan & Sun, Hongbin, 2023. "A fast thermal simulation and dynamic feedback control framework for lithium-ion batteries," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011030
    DOI: 10.1016/j.apenergy.2023.121739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    2. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    3. Jiang, Z.Y. & Qu, Z.G. & Zhang, J.F. & Rao, Z.H., 2020. "Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy," Applied Energy, Elsevier, vol. 268(C).
    4. Liu, Yuanzhi & Zhang, Jie, 2020. "Self-adapting J-type air-based battery thermal management system via model predictive control," Applied Energy, Elsevier, vol. 263(C).
    5. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    6. Lingxi Kong & Chuan Li & Jiuchun Jiang & Michael G. Pecht, 2018. "Li-Ion Battery Fire Hazards and Safety Strategies," Energies, MDPI, vol. 11(9), pages 1-11, August.
    7. Ling, Ziye & Lin, Wenzhu & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez-Iturriaga, Pablo & García, Víctor Manuel & Rodríguez-Bolívar, Salvador & Valdés, Enrique Ernesto & Anseán, David & López-Villanueva, Juan Antonio, 2024. "A coupled electrothermal lithium-ion battery reduced-order model including heat generation due to solid diffusion," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    2. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Xie, Jiahang & Yang, Rufan & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2023. "PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system," Applied Energy, Elsevier, vol. 331(C).
    4. Kim, Hong-Keun & Lee, Kyu-Jin, 2023. "Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations," Energy, Elsevier, vol. 262(PB).
    5. Weng, Jingwen & Xiao, Changren & Ouyang, Dongxu & Yang, Xiaoqing & Chen, Mingyi & Zhang, Guoqing & Yuen, Richard Kwok Kit & Wang, Jian, 2022. "Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives," Energy, Elsevier, vol. 239(PC).
    6. Tianshi Zhang & Ziming Mo & Xiaoyu Xu & Xiaoyan Liu & Haopeng Chen & Zhiwu Han & Yuying Yan & Yingai Jin, 2022. "Advanced Study of Spray Cooling: From Theories to Applications," Energies, MDPI, vol. 15(23), pages 1-40, December.
    7. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    8. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    9. Kumar, Kartik & Sarkar, Jahar & Mondal, Swasti Sundar, 2024. "Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework," Applied Energy, Elsevier, vol. 355(C).
    10. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    11. Deng, Jian & Huang, Qiqiu & Li, Xinxi & Zhang, Guoqing & Li, Canbing & Li, Songbo, 2024. "Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging," Renewable Energy, Elsevier, vol. 222(C).
    12. Lingxi Kong & Diganta Das & Michael G. Pecht, 2022. "The Distribution and Detection Issues of Counterfeit Lithium-Ion Batteries," Energies, MDPI, vol. 15(10), pages 1-13, May.
    13. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    14. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    15. Prahaladh Paniyil & Vishwas Powar & Rajendra Singh & Benjamin Hennigan & Pamela Lule & Matthew Allison & John Kimsey & Anthony Carambia & Dhruval Patel & Daniel Carrillo & Zachary Shriber & Truman Baz, 2020. "Photovoltaics- and Battery-Based Power Network as Sustainable Source of Electric Power," Energies, MDPI, vol. 13(19), pages 1-22, September.
    16. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    17. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    18. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    19. Wong, Shaw Kang & Li, Kuijie & Rui, Xinyu & Fan, Liyun & Ouyang, Minggao & Feng, Xuning, 2024. "Mitigating thermal runaway propagation in high specific energy lithium-ion battery modules through nanofiber aerogel composite material," Energy, Elsevier, vol. 307(C).
    20. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.