IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923008966.html
   My bibliography  Save this article

Predictive eco-driving strategy for hybrid electric vehicles on off-road terrain considering vehicle stability constraint

Author

Listed:
  • Liu, Rui
  • Liu, Hui
  • Han, Lijin
  • Nie, Shida
  • Ruan, Shumin
  • Yang, Ningkang

Abstract

Road vehicles can obtain traffic information via Intelligent Transportation System (ITS), which yields more potential in improving driving performance. However, ITS is not available for off-road vehicles and only limited information can be obtained by onboard sensors. Meanwhile, the off-road terrain suffers from terrible road conditions, which brings great difficulties to ensuring driving safety. Therefore, how to coordinate fuel economy, vehicle mobility and driving safety with limited traffic information is a challenging problem for off-road vehicles. To tackle the problem, an online predictive eco-driving strategy is proposed in this paper, which consists of safety supervisory module, time reference generator and rolling optimization. Firstly, considering the off-road terrain characteristic, the safety supervisory module analysis the vehicle stability performance under different road conditions, and thus the driving safety on off-road terrain with low adhesion coefficient, high curvature and heavy grade can be guaranteed. Secondly, the time reference generator is designed to ensure vehicle mobility. With only a prior knowledge of distance to destination, the time reference generator can generate the reference time in prediction horizon fast and effectively. Finally, model predictive control is employed to construct the multi-objective eco-driving problem, with an ameliorated particle swarm optimization to minimize the fuel consumption while tracking the reference time and ensuring driving safety. Simulations are conducted to validate the effectiveness of the proposed strategy. The results exhibit that the fuel economy and vehicle mobility can be improved by 10.13% and 5.77% over practical strategy in the premise of ensuring driving safety under the 5 km off-road terrain scenario. Moreover, a hardware-in-loop test is implemented to verify the real-time ability of the proposed strategy.

Suggested Citation

  • Liu, Rui & Liu, Hui & Han, Lijin & Nie, Shida & Ruan, Shumin & Yang, Ningkang, 2023. "Predictive eco-driving strategy for hybrid electric vehicles on off-road terrain considering vehicle stability constraint," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923008966
    DOI: 10.1016/j.apenergy.2023.121532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jian & Wang, Xiangyu & Li, Liang & Qin, Cun'an & Du, Yongchang, 2018. "Hierarchical control strategy with battery aging consideration for hybrid electric vehicle regenerative braking control," Energy, Elsevier, vol. 145(C), pages 301-312.
    2. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    3. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    4. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Rui & Liu, Hui & Nie, Shida & Han, Lijin & Yang, Ningkang, 2023. "A hierarchical eco-driving strategy for hybrid electric vehicles via vehicle-to-cloud connectivity," Energy, Elsevier, vol. 281(C).
    2. Baodi Zhang & Sheng Guo & Xin Zhang & Qicheng Xue & Lan Teng, 2020. "Adaptive Smoothing Power Following Control Strategy Based on an Optimal Efficiency Map for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 13(8), pages 1-25, April.
    3. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    4. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    5. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    6. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    8. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    9. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    10. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    11. Do, Tri Cuong & Dinh, Truong Quang & Yu, Yingxiao & Ahn, Kyoung Kwan, 2023. "Innovative powertrain and advanced energy management strategy for hybrid hydraulic excavators," Energy, Elsevier, vol. 282(C).
    12. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    13. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    14. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    15. Li, Jie & Fotouhi, Abbas & Pan, Wenjun & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2023. "Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties," Energy, Elsevier, vol. 279(C).
    16. Simin Hesami & Majid Vafaeipour & Cedric De Cauwer & Evy Rombaut & Lieselot Vanhaverbeke & Thierry Coosemans, 2023. "Dynamic Pro-Active Eco-Driving Control Framework for Energy-Efficient Autonomous Electric Mobility," Energies, MDPI, vol. 16(18), pages 1-19, September.
    17. Tri-Cuong Do & Hoai-An Trinh & Kyoung-Kwan Ahn, 2023. "Hierarchical Control Strategy with Battery Dynamic Consideration for a Dual Fuel Cell/Battery Tramway," Mathematics, MDPI, vol. 11(10), pages 1-19, May.
    18. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    19. Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).
    20. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923008966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.