IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v345y2023ics0306261923006840.html
   My bibliography  Save this article

Energy tracing of solar cells for spectral-beam-splitting photovoltaic/thermal (PVT) systems

Author

Listed:
  • Pan, Xinyu
  • Ju, Xing
  • Yuan, Mengdi
  • Xu, Chao
  • Du, Xiaoze

Abstract

Spectral beam splitting (SBS) offers several benefits to improve photovoltaic thermal (PVT) performance. However, the detailed loss mechanism inside the solar cells related to varying spectrum remains unclear. This paper establishes an optical-electrical-thermal (OET) model to trace solar cells' detailed energy conversion and transport processes. The light-caused interactions within solar cells are comprehensively clarified. A heterojunction GaAs solar cell is validated and analyzed with an efficiency deviation of 0.73 %. The results of the OET analysis under the standard solar spectrum (AM 1.5G) show that seven energy losses of 337.27 W/m2 convert to heat, leading to the electricity declining to 23.17 % and operating temperature rising to 51.12 °C. Based on the proposed spectrum-loss correlation method, the OET model detaches energy and loss distributions related to the spectrum under operating conditions. A modified external quantum efficiency (EQE) is achieved that can accurately reflect the carrier collection ability of solar cells under operating voltages. With different spectrum windows, the solar cell presents varying thermodynamic characteristics. If removing the short wavelengths, the temperature-dependent coefficient of efficiency (Ceff) will be higher than −0.058 %/K (AM 1.5G), leading to the solar cell remaining less efficiency degradation with temperature increment for SBS PVT applications. Even if considering the electricity performance only, the solar cells can achieve better conversion efficiency with selective spectrum windows. This work offers a practical approach to microscopic energy investigation of solar cells to realize efficient optimization for SBS applications.

Suggested Citation

  • Pan, Xinyu & Ju, Xing & Yuan, Mengdi & Xu, Chao & Du, Xiaoze, 2023. "Energy tracing of solar cells for spectral-beam-splitting photovoltaic/thermal (PVT) systems," Applied Energy, Elsevier, vol. 345(C).
  • Handle: RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006840
    DOI: 10.1016/j.apenergy.2023.121320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923006840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
    2. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    3. Han, Xue & Zhao, Guankun & Xu, Chao & Ju, Xing & Du, Xiaoze & Yang, Yongping, 2017. "Parametric analysis of a hybrid solar concentrating photovoltaic/concentrating solar power (CPV/CSP) system," Applied Energy, Elsevier, vol. 189(C), pages 520-533.
    4. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    5. Wang, Ao & Xuan, Yimin, 2020. "Multiscale prediction of localized hot-spot phenomena in solar cells," Renewable Energy, Elsevier, vol. 146(C), pages 1292-1300.
    6. Shen, Lu & Li, Zhenpeng & Ma, Tao, 2020. "Analysis of the power loss and quantification of the energy distribution in PV module," Applied Energy, Elsevier, vol. 260(C).
    7. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    8. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    9. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    11. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    12. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Xinghua & Xu, Li & Peng, Qingguo & Wu, Yifeng & Wang, Hao & Yan, Feng & Zhang, Long & Teng, Peng & Fu, Shuai, 2024. "Experimental and numerical investigation on energy efficiency improvement of methane/propane added of hydrogen-fueled micro power generation," Energy, Elsevier, vol. 302(C).
    2. Sheng Yang & Hong-Yi Shi & Jia Liu & Yang-Yan Lai & Özgür Bayer & Li-Wu Fan, 2024. "Supercooled erythritol for high-performance seasonal thermal energy storage," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.
    3. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    4. Ziyati, Dounia & Dollet, Alain & Flamant, Gilles & Volut, Yann & Guillot, Emmanuel & Vossier, Alexis, 2021. "A multiphysics model of large-scale compact PV–CSP hybrid plants," Applied Energy, Elsevier, vol. 288(C).
    5. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    7. Xia, Xiaokang & Wei, Wei & Yu, Bendong & Li, Niansi & Ji, Jie, 2024. "Experiment and numerical investigation on a spectral splitting PV/T system for electrical energy and thermal output," Energy, Elsevier, vol. 288(C).
    8. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Ling, Yunyi & Li, Wenjia & Jin, Jian & Yu, Yuhang & Hao, Yong & Jin, Hongguang, 2020. "A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation," Applied Energy, Elsevier, vol. 260(C).
    10. Zhao, Shuang & Li, Wenzhi & Abd El-Samie, Mostafa M. & Ju, Xing & Xu, Chao, 2022. "Numerical simulation to study the effect of spectral division of solar irradiance on the spectral splitting photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 182(C), pages 634-646.
    11. Zhao, Xiaobo & Han, Xinyue & Yao, Yiping & Huang, Ju, 2022. "Stability investigation of propylene glycol-based Ag@SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems," Energy, Elsevier, vol. 238(PC).
    12. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    13. Li, Boyu & Hong, Wenpeng & Li, Haoran & Lan, Jingrui & Zi, Junliang, 2022. "Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis," Energy, Elsevier, vol. 242(C).
    14. Xiao, Yang & Tian, Wenshuang & Yu, Linfeng & Chen, Meijie & Zheng, Xiong & Qin, Guangzhao, 2024. "Tunable optical properties of ATO-CuO hybrid nanofluids and the application as spectral beam splitters," Energy, Elsevier, vol. 289(C).
    15. Hao, Xinyue & Zhou, Yifan & Wang, Qin & Gao, Neng & Wang, Xuehui & Chen, Guangming, 2023. "Prospective study of a novel heat pump system with solar energy spectral beam splitting," Renewable Energy, Elsevier, vol. 217(C).
    16. Zhang, J.J. & Qu, Z.G. & Zhang, J.F., 2022. "MCRT-FDTD investigation of the solar-plasmonic-electrical conversion for uniform irradiation in a spectral splitting CPVT system," Applied Energy, Elsevier, vol. 315(C).
    17. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    18. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    19. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    20. Cesar Lucio & Omar Behar & Bassam Dally, 2023. "Techno-Economic Assessment of CPVT Spectral Splitting Technology: A Case Study on Saudi Arabia," Energies, MDPI, vol. 16(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.