IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011200.html
   My bibliography  Save this article

A techno-economic-environmental assessment of a hybrid-renewable pumped hydropower energy storage system: A case study of Saudi Arabia

Author

Listed:
  • Alqahtani, Bader
  • Yang, Jin
  • Paul, Manosh C.

Abstract

The depletion of valuable resources like oil and natural gas and the growth of greenhouse gas emissions have led governments worldwide (e.g. Saudi Arabia) to prioritise renewable energy sources. However, designing and implementing such sources are subject to sensitive technical, economical, and environmental factors. The current study aims to accurately design each component of a hybrid renewable energy system consisting of photovoltaic/wind turbines/pumped hydropower energy storage relying on the development of a multi-objective optimisation model. To increase the robustness of the model outcomes, objectives include incorporating a head loss factor into the model, considering a capacity factor as the main metric for energy storage design, and conducting a techno-economic environmental assessment considering greenhouse emission credit. Three algorithms (non-dominated sorting, reference direction-based, and two-archive evolutionary) are developed, and a comparative analysis with Saudia Arabia as a case study is carried out. The results show that considering a combination of solar and wind energy in a hybrid renewable energy system could cover up to 93 % of total demand, with a maximum pumped hydro capacity factor of 27 %. This combination is much better than using solar or wind alone (i.e. 62 % and 70 %, respectively) at a capacity factor of pumped hydro of 18 %. The levelised cost of energy for the proposed system ranges between 0.07 and 0.22 $/kWh, largely influenced by proposed Saudia Arabia government subsidies. Regarding environmental assessment, the total amount of greenhouse gas emissions generated annually from all proposed systems is between 2.4 and 11 million tonnes.

Suggested Citation

  • Alqahtani, Bader & Yang, Jin & Paul, Manosh C., 2024. "A techno-economic-environmental assessment of a hybrid-renewable pumped hydropower energy storage system: A case study of Saudi Arabia," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011200
    DOI: 10.1016/j.renene.2024.121052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    2. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    3. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    4. Shabani, Masoume & Dahlquist, Erik & Wallin, Fredrik & Yan, Jinyue, 2020. "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," Applied Energy, Elsevier, vol. 279(C).
    5. Aldubyan, Mohammad & Gasim, Anwar, 2021. "Energy price reform in Saudi Arabia: Modeling the economic and environmental impacts and understanding the demand response," Energy Policy, Elsevier, vol. 148(PB).
    6. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
    7. Wang, Rui & Xiong, Jian & He, Min-fan & Gao, Liang & Wang, Ling, 2020. "Multi-objective optimal design of hybrid renewable energy system under multiple scenarios," Renewable Energy, Elsevier, vol. 151(C), pages 226-237.
    8. Sun, Kaiqi & Li, Ke-Jun & Pan, Jiuping & Liu, Yong & Liu, Yilu, 2019. "An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system," Applied Energy, Elsevier, vol. 242(C), pages 1155-1163.
    9. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    10. Sultan J. Alharbi & Abdulaziz S. Alaboodi, 2023. "A Review on Techno-Economic Study for Supporting Building with PV-Grid-Connected Systems under Saudi Regulations," Energies, MDPI, vol. 16(3), pages 1-14, February.
    11. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    12. Duchaud, Jean-Laurent & Notton, Gilles & Darras, Christophe & Voyant, Cyril, 2019. "Multi-Objective Particle Swarm optimal sizing of a renewable hybrid power plant with storage," Renewable Energy, Elsevier, vol. 131(C), pages 1156-1167.
    13. Abdelshafy, Alaaeldin M. & Jurasz, Jakub & Hassan, Hamdy & Mohamed, Abdelfatah M., 2020. "Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hakim Laid Mouloud Benhacene & Asaad Mubarak Hussien, 2025. "The Impact of Adopting Renewable Energy Resources on Sustainable Development in Saudi Arabia: A Qualitative View," Sustainability, MDPI, vol. 17(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    3. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    4. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Om Prakash Mahela & Ramakrishna S. S. Nuvvula & Divine Khan Ngwashi & Emmanuel Soriano Flores & Emmanuel Tanyi, 2023. "Techno-Economic Analysis and Optimization of Hybrid Renewable Energy System with Energy Storage under Two Operational Modes," Sustainability, MDPI, vol. 15(15), pages 1-31, July.
    5. Majed A. Alotaibi & Ali M. Eltamaly, 2021. "A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia," Energies, MDPI, vol. 14(21), pages 1-24, October.
    6. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
    7. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    8. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    9. He, Yi & Guo, Su & Dong, Peixin & Wang, Chen & Huang, Jing & Zhou, Jianxu, 2022. "Techno-economic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index," Applied Energy, Elsevier, vol. 328(C).
    10. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.
    11. Muhammed Y. Worku, 2022. "Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    12. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Sadeghi, Delnia & Ahmadi, Seyed Ehsan & Amiri, Nima & Satinder, & Marzband, Mousa & Abusorrah, Abdullah & Rawa, Muhyaddin, 2022. "Designing, optimizing and comparing distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential buildings," Energy, Elsevier, vol. 253(C).
    14. Yanpin Li & Huiliang Wang & Zichao Zhang & Huawei Li & Xiaoli Wang & Qifan Zhang & Tong Zhou & Peng Zhang & Fengxiang Chang, 2023. "Optimal Scheduling of the Wind-Photovoltaic-Energy Storage Multi-Energy Complementary System Considering Battery Service Life," Energies, MDPI, vol. 16(13), pages 1-17, June.
    15. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    16. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    17. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    18. Sun, Yougang & Xu, Junqi & Lin, Guobin & Ni, Fei & Simoes, Rolando, 2018. "An optimal performance based new multi-objective model for heat and power hub in large scale users," Energy, Elsevier, vol. 161(C), pages 1234-1249.
    19. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    20. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.