IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923004932.html
   My bibliography  Save this article

Bidding strategy of integrated energy system considering decision maker’s subjective risk aversion

Author

Listed:
  • Liu, Yangyang
  • Zhou, Jiangxin
  • Zhou, Qihui
  • Liu, Chuanquan
  • Yu, Feng

Abstract

Improving energy efficient is a promising solution to save energy costs and reduce carbon emission. Based on energy cascade utilization technology, integrated energy systems can supply multiple energy carriers to customers efficiently. However, the integration of multiple energy systems and components brings various uncertainties to integrated energy systems, highlighting the importance of risk management when integrated energy systems participate in energy market. In this paper, spectral risk measure which can model decision makers’ subjective risk aversion is introduced. Two typical measures, exponential spectral risk measure and power spectral risk measure, are discussed and compared. Then, a bidding strategy based on spectral risk measure is proposed for integrated energy systems to participate in short-term energy markets. The optimal self-scheduling and bidding curves in the day-ahead electricity market can be obtained. Compared with the traditional risk measures, the spectral risk measure is a customized risk measure according to decision makers’ subjective attitude and it can improve the decision makers’ subjective preference on the optimal results, as illustrated by case studies.

Suggested Citation

  • Liu, Yangyang & Zhou, Jiangxin & Zhou, Qihui & Liu, Chuanquan & Yu, Feng, 2023. "Bidding strategy of integrated energy system considering decision maker’s subjective risk aversion," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004932
    DOI: 10.1016/j.apenergy.2023.121129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Ge, Shaoyun & Li, Jifeng & He, Xingtang & Liu, Hong, 2021. "Joint energy market design for local integrated energy system service procurement considering demand flexibility," Applied Energy, Elsevier, vol. 297(C).
    4. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    5. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    6. Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
    7. Aghamohamadi, Mehrdad & Mahmoudi, Amin, 2019. "From bidding strategy in smart grid toward integrated bidding strategy in smart multi-energy systems, an adaptive robust solution approach," Energy, Elsevier, vol. 183(C), pages 75-91.
    8. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    9. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
    10. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Liu, Shuai & Li, Shuzhen & Wang, Yu, 2021. "Distributed coordinative transaction of a community integrated energy system based on a tri-level game model," Applied Energy, Elsevier, vol. 295(C).
    11. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    12. Acerbi Carlo & Simonetti Prospero, 2002. "Portfolio Optimization with Spectral Measures of Risk," Papers cond-mat/0203607, arXiv.org.
    13. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    2. Massimiliano Barbi & Silvia Romagnoli, 2016. "Optimal hedge ratio under a subjective re-weighting of the original measure," Applied Economics, Taylor & Francis Journals, vol. 48(14), pages 1271-1280, March.
    3. Matyska, Branka, 2021. "Salience, systemic risk and spectral risk measures as capital requirements," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    4. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    5. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    6. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
    7. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    8. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    9. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    10. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    11. Suparna Biswas & Rituparna Sen, 2019. "Kernel Based Estimation of Spectral Risk Measures," Papers 1903.03304, arXiv.org, revised Dec 2023.
    12. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    13. Arıkan, Emel & Fichtinger, Johannes, 2017. "The risk-averse newsvendor problem under spectral risk measures: A classification with extensions," European Journal of Operational Research, Elsevier, vol. 256(1), pages 116-125.
    14. Li, Yanhai & Ou, Jinwen, 2020. "Optimal ordering policy for complementary components with partial backordering and emergency replenishment under spectral risk measure," European Journal of Operational Research, Elsevier, vol. 284(2), pages 538-549.
    15. Su, Xiaoshan & Li, Yuhan, 2024. "Robust portfolio selection with subjective risk aversion under dependence uncertainty," Economic Modelling, Elsevier, vol. 132(C).
    16. Adam, Lukáš & Branda, Martin, 2021. "Risk-aversion in data envelopment analysis models with diversification," Omega, Elsevier, vol. 102(C).
    17. Takashi Kato, 2017. "Asymptotic Analysis for Spectral Risk Measures Parameterized by Confidence Level," Papers 1711.07335, arXiv.org.
    18. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value-at-Risk and spectral risk measures?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 156-167.
    19. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    20. Marcin Fałdziński & Magdalena Osińska & Tomasz Zdanowicz, 2012. "Detecting Risk Transfer in Financial Markets using Different Risk Measures," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(1), pages 45-64, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.