IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v297y2021ics0306261921005171.html
   My bibliography  Save this article

Joint energy market design for local integrated energy system service procurement considering demand flexibility

Author

Listed:
  • Ge, Shaoyun
  • Li, Jifeng
  • He, Xingtang
  • Liu, Hong

Abstract

Electric power system reform and innovative energy transaction policies have become increasingly common. In view of the fact that research on today’s multi-energy coupled market have not yet incorporated multi-energy substitution characteristics on the supply and demand sides, nor the coordination between regional and user level markets. A joint energy market was developed in this study for the procurement of local integrated energy system services considering demand flexibility. The transaction mechanisms of the regional level energy coupled market and user level Peer-to-Peer (P2P) distributed transaction market were determined accordingly. The multi-energy and complementary regional energy market was coupled with the user-level distributed transaction market that considering flexible demand response characteristics to establish a regional integrated energy system joint market. The electricity, gas, and heat markets in the regional market were modeled separately, then a joint clearing mechanism of the energy coupled market was established. An autonomous scheduling model for distributed market participants at the user level and a P2P transaction mechanism considering multi-agent non-cooperative game was proposed. The bidding behaviors of different energy operators in the regional level market were simulated to assess the influencing factors. The economic and technical benefits of P2P transactions at the user level as remitted to market participants were quantitatively determined with specific indexes. The correlations and interactions between the region level and user level markets were also analyzed.

Suggested Citation

  • Ge, Shaoyun & Li, Jifeng & He, Xingtang & Liu, Hong, 2021. "Joint energy market design for local integrated energy system service procurement considering demand flexibility," Applied Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:appene:v:297:y:2021:i:c:s0306261921005171
    DOI: 10.1016/j.apenergy.2021.117060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
    2. Liran Einav & Chiara Farronato & Jonathan Levin, 2016. "Peer-to-Peer Markets," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 615-635, October.
    3. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    4. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    5. Liu, Youbo & Zuo, Kunyu & Liu, Xueqin (Amy) & Liu, Junyong & Kennedy, Jason M., 2018. "Dynamic pricing for decentralized energy trading in micro-grids," Applied Energy, Elsevier, vol. 228(C), pages 689-699.
    6. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    7. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    8. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    9. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    10. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
    11. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    12. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Lai & Zhihan Xie & Danlu Xu & Shuyang Ying & Yiming Zeng & Chenwei Jiang & Fei Wang & Fushuan Wen & Ivo Palu, 2022. "Operation Optimization of an Integrated Energy Service Provider with Ancillary Service Provision," Energies, MDPI, vol. 15(12), pages 1-15, June.
    2. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    3. You, Zhengjie & Lumpp, Sebastian Dirk & Doepfert, Markus & Tzscheutschler, Peter & Goebel, Christoph, 2024. "Leveraging flexibility of residential heat pumps through local energy markets," Applied Energy, Elsevier, vol. 355(C).
    4. Ruhang, Xu & Jia, Jia, 2023. "Towards reliability competition: Non-cooperative market mechanism under high variable renewable energy penetration," Applied Energy, Elsevier, vol. 331(C).
    5. Li, Junkai & Ge, Shaoyun & Xu, Zhengyang & Liu, Hong & Li, Jifeng & Wang, Chengshan & Cheng, Xueying, 2023. "A network-secure peer-to-peer trading framework for electricity-carbon integrated market among local prosumers," Applied Energy, Elsevier, vol. 335(C).
    6. Liu, Yangyang & Zhou, Jiangxin & Zhou, Qihui & Liu, Chuanquan & Yu, Feng, 2023. "Bidding strategy of integrated energy system considering decision maker’s subjective risk aversion," Applied Energy, Elsevier, vol. 341(C).
    7. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    8. Mohammad Mehdi Amiri & Mohammad Taghi Ameli & Goran Strbac & Danny Pudjianto & Hossein Ameli, 2024. "The Role of Flexibility in the Integrated Operation of Low-Carbon Gas and Electricity Systems: A Review," Energies, MDPI, vol. 17(9), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    4. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    5. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).
    6. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    8. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    9. Meena, Nand K. & Yang, Jin & Zacharis, Evan, 2019. "Optimisation framework for the design and operation of open-market urban and remote community microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    11. Dong, Jingya & Song, Chunhe & Liu, Shuo & Yin, Huanhuan & Zheng, Hao & Li, Yuanjian, 2022. "Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach," Applied Energy, Elsevier, vol. 325(C).
    12. Hui Huang & Shilin Nie & Jin Lin & Yuanyuan Wang & Jun Dong, 2020. "Optimization of Peer-to-Peer Power Trading in a Microgrid with Distributed PV and Battery Energy Storage Systems," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    13. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    14. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    15. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    16. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    17. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    18. Vikash Kumar Saini & Chandra Shekhar Purohit & Rajesh Kumar & Ameena S. Al-Sumaiti, 2023. "Proof of Work Consensus Based Peer to Peer Energy Trading in the Indian Residential Community," Energies, MDPI, vol. 16(3), pages 1-25, January.
    19. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    20. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:297:y:2021:i:c:s0306261921005171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.