IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1903.03304.html
   My bibliography  Save this paper

Kernel Based Estimation of Spectral Risk Measures

Author

Listed:
  • Suparna Biswas
  • Rituparna Sen

Abstract

Spectral risk measures (SRMs) belong to the family of coherent risk measures. A natural estimator for the class of SRMs has the form of L-statistics. Various authors have studied and derived the asymptotic properties of the empirical estimator of SRM. We propose a kernel based estimator of SRM. We investigate the large sample properties of general L-statistics based on i.i.d and dependent observations and apply them to our estimator. We prove that it is strongly consistent and asymptotically normal. We compare the finite sample performance of our proposed kernel estimator with that of several existing estimators for different SRMs using Monte Carlo simulation. We observe that our proposed kernel estimator outperforms all the estimators. Based on our simulation study we have estimated the exponential SRM of four future indices-that is Nikkei 225, Dax, FTSE 100, and Hang Seng. We also discuss the use of SRM in setting initial margin requirements of clearinghouses. Finally we perform a backtesting exercise of SRM.

Suggested Citation

  • Suparna Biswas & Rituparna Sen, 2019. "Kernel Based Estimation of Spectral Risk Measures," Papers 1903.03304, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:1903.03304
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1903.03304
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Jan W. H. Swanepoel & Francois C. Van Graan, 2005. "A New Kernel Distribution Function Estimator Based on a Non‐parametric Transformation of the Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 551-562, December.
    4. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Hideatsu Tsukahara, 2013. "Estimation of Distortion Risk Measures," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 213-235, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    2. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    3. Francis Liu & Natalie Packham & Meng-Jou Lu & Wolfgang Karl Härdle, 2023. "Hedging cryptos with Bitcoin futures," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 819-841, May.
    4. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    5. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    6. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    7. Massimiliano Barbi & Silvia Romagnoli, 2016. "Optimal hedge ratio under a subjective re-weighting of the original measure," Applied Economics, Taylor & Francis Journals, vol. 48(14), pages 1271-1280, March.
    8. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    9. Omid Momen & Akbar Esfahanipour & Abbas Seifi, 2020. "A robust behavioral portfolio selection: model with investor attitudes and biases," Operational Research, Springer, vol. 20(1), pages 427-446, March.
    10. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    11. Matyska, Branka, 2021. "Salience, systemic risk and spectral risk measures as capital requirements," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    12. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    13. Choo, Weihao & de Jong, Piet, 2016. "Insights to systematic risk and diversification across a joint probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 142-150.
    14. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    15. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    16. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    17. Arıkan, Emel & Fichtinger, Johannes, 2017. "The risk-averse newsvendor problem under spectral risk measures: A classification with extensions," European Journal of Operational Research, Elsevier, vol. 256(1), pages 116-125.
    18. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    19. Martin Herdegen & Nazem Khan, 2020. "Mean-$\rho$ portfolio selection and $\rho$-arbitrage for coherent risk measures," Papers 2009.05498, arXiv.org, revised Jul 2021.
    20. Jungsywan H. Sepanski & Xiwen Wang, 2023. "New Classes of Distortion Risk Measures and Their Estimation," Risks, MDPI, vol. 11(11), pages 1-21, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1903.03304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.