IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7609-d678966.html
   My bibliography  Save this article

Power Profile and Thresholding Assisted Multi-Label NILM Classification

Author

Listed:
  • Muhammad Asif Ali Rehmani

    (Department of Mechanical and Electrical Engineering, SF&AT, Massey University, Auckland 0632, New Zealand
    School of Professional Engineering, Manukau Institute of Technology, Auckland 2104, New Zealand)

  • Saad Aslam

    (School of Professional Engineering, Manukau Institute of Technology, Auckland 2104, New Zealand)

  • Shafiqur Rahman Tito

    (School of Professional Engineering, Manukau Institute of Technology, Auckland 2104, New Zealand)

  • Snjezana Soltic

    (School of Professional Engineering, Manukau Institute of Technology, Auckland 2104, New Zealand)

  • Pieter Nieuwoudt

    (School of Professional Engineering, Manukau Institute of Technology, Auckland 2104, New Zealand)

  • Neel Pandey

    (School of Professional Engineering, Manukau Institute of Technology, Auckland 2104, New Zealand)

  • Mollah Daud Ahmed

    (Research Office, Manukau Institute of Technology, Auckland 2104, New Zealand)

Abstract

Next-generation power systems aim at optimizing the energy consumption of household appliances by utilising computationally intelligent techniques, referred to as load monitoring. Non-intrusive load monitoring (NILM) is considered to be one of the most cost-effective methods for load classification. The objective is to segregate the energy consumption of individual appliances from their aggregated energy consumption. The extracted energy consumption of individual devices can then be used to achieve demand-side management and energy saving through optimal load management strategies. Machine learning (ML) has been popularly used to solve many complex problems including NILM. With the availability of the energy consumption datasets, various ML algorithms have been effectively trained and tested. However, most of the current methodologies for NILM employ neural networks only for a limited operational output level of appliances and their combinations (i.e., only for a small number of classes). On the contrary, this work depicts a more practical scenario where over a hundred different combinations were considered and labelled for the training and testing of various machine learning algorithms. Moreover, two novel concepts—i.e., thresholding/occurrence per million (OPM) along with power windowing—were utilised, which significantly improved the performance of the trained algorithms. All the trained algorithms were thoroughly evaluated using various performance parameters. The results shown demonstrate the effectiveness of thresholding and OPM concepts in classifying concurrently operating appliances using ML.

Suggested Citation

  • Muhammad Asif Ali Rehmani & Saad Aslam & Shafiqur Rahman Tito & Snjezana Soltic & Pieter Nieuwoudt & Neel Pandey & Mollah Daud Ahmed, 2021. "Power Profile and Thresholding Assisted Multi-Label NILM Classification," Energies, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7609-:d:678966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elnaz Azizi & Mohammad T. H. Beheshti & Sadegh Bolouki, 2021. "Event Matching Classification Method for Non-Intrusive Load Monitoring," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    2. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    3. André Eugenio Lazzaretti & Douglas Paulo Bertrand Renaux & Carlos Raimundo Erig Lima & Bruna Machado Mulinari & Hellen Cristina Ancelmo & Elder Oroski & Fabiana Pöttker & Robson Ribeiro Linhares & Luc, 2020. "A Multi-Agent NILM Architecture for Event Detection and Load Classification," Energies, MDPI, vol. 13(17), pages 1-35, August.
    4. Fatih Issi & Orhan Kaplan, 2018. "The Determination of Load Profiles and Power Consumptions of Home Appliances," Energies, MDPI, vol. 11(3), pages 1-18, March.
    5. Neda Abdelhamid & Arun Padmavathy & David Peebles & Fadi Thabtah & Daymond Goulder-Horobin, 2020. "Data Imbalance in Autism Pre-Diagnosis Classification Systems: An Experimental Study," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-16, March.
    6. Anthony Faustine & Lucas Pereira, 2020. "Multi-Label Learning for Appliance Recognition in NILM Using Fryze-Current Decomposition and Convolutional Neural Network," Energies, MDPI, vol. 13(16), pages 1-17, August.
    7. Jiateng Song & Hongbin Wang & Mingxing Du & Lei Peng & Shuai Zhang & Guizhi Xu, 2021. "Non-Intrusive Load Identification Method Based on Improved Long Short Term Memory Network," Energies, MDPI, vol. 14(3), pages 1-15, January.
    8. Christos Athanasiadis & Dimitrios Doukas & Theofilos Papadopoulos & Antonios Chrysopoulos, 2021. "A Scalable Real-Time Non-Intrusive Load Monitoring System for the Estimation of Household Appliance Power Consumption," Energies, MDPI, vol. 14(3), pages 1-23, February.
    9. Anthony Faustine & Lucas Pereira, 2020. "Improved Appliance Classification in Non-Intrusive Load Monitoring Using Weighted Recurrence Graph and Convolutional Neural Networks," Energies, MDPI, vol. 13(13), pages 1-15, July.
    10. İsmail Hakkı ÇAVDAR & Vahid FARYAD, 2019. "New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid," Energies, MDPI, vol. 12(7), pages 1-18, March.
    11. Changho Shin & Seungeun Rho & Hyoseop Lee & Wonjong Rhee, 2019. "Data Requirements for Applying Machine Learning to Energy Disaggregation," Energies, MDPI, vol. 12(9), pages 1-19, May.
    12. Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
    2. Andreas Reinhardt & Lucas Pereira, 2021. "Special Issue: “Energy Data Analytics for Smart Meter Data”," Energies, MDPI, vol. 14(17), pages 1-3, August.
    3. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    4. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    5. Tanoni, Giulia & Principi, Emanuele & Squartini, Stefano, 2024. "Non-Intrusive Load Monitoring in industrial settings: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    6. Xia, Yingqi & Sun, Gengchen & Wang, Yanfeng & Yang, Qing & Wang, Qingrui & Ba, Shusong, 2024. "A novel carbon emission estimation method based on electricity‑carbon nexus and non-intrusive load monitoring," Applied Energy, Elsevier, vol. 360(C).
    7. Jiateng Song & Hongbin Wang & Mingxing Du & Lei Peng & Shuai Zhang & Guizhi Xu, 2021. "Non-Intrusive Load Identification Method Based on Improved Long Short Term Memory Network," Energies, MDPI, vol. 14(3), pages 1-15, January.
    8. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    9. Christos Athanasiadis & Dimitrios Doukas & Theofilos Papadopoulos & Antonios Chrysopoulos, 2021. "A Scalable Real-Time Non-Intrusive Load Monitoring System for the Estimation of Household Appliance Power Consumption," Energies, MDPI, vol. 14(3), pages 1-23, February.
    10. Todic, Tamara & Stankovic, Vladimir & Stankovic, Lina, 2023. "An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem," Applied Energy, Elsevier, vol. 341(C).
    11. Netzah Calamaro & Moshe Donko & Doron Shmilovitz, 2021. "A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements," Energies, MDPI, vol. 14(21), pages 1-37, November.
    12. Dadiana-Valeria Căiman & Toma-Leonida Dragomir, 2020. "A Novel Method for Obtaining the Signature of Household Consumer Pairs," Energies, MDPI, vol. 13(22), pages 1-20, November.
    13. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    14. Yongtao Shi & Xiaodong Zhao & Fan Zhang & Yaguang Kong, 2022. "Non-Intrusive Load Monitoring Based on Swin-Transformer with Adaptive Scaling Recurrence Plot," Energies, MDPI, vol. 15(20), pages 1-18, October.
    15. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    16. Anthony Faustine & Lucas Pereira, 2020. "Multi-Label Learning for Appliance Recognition in NILM Using Fryze-Current Decomposition and Convolutional Neural Network," Energies, MDPI, vol. 13(16), pages 1-17, August.
    17. Mao Wang & Dandan Liu & Changzhi Li, 2023. "Non-Intrusive Load Decomposition Based on Instance-Batch Normalization Networks," Energies, MDPI, vol. 16(7), pages 1-15, March.
    18. Wei Wang & Zilin Wang & Yanru Chen & Min Guo & Zhengyu Chen & Yi Niu & Huangeng Liu & Liangyin Chen, 2021. "Bats: An Appliance Safety Hazards Factors Detection Algorithm with an Improved Nonintrusive Load Disaggregation Method," Energies, MDPI, vol. 14(12), pages 1-18, June.
    19. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    20. Véronique Vasseur & Anne-Francoise Marique, 2019. "Households’ Willingness to Adopt Technological and Behavioral Energy Savings Measures: An Empirical Study in The Netherlands," Energies, MDPI, vol. 12(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7609-:d:678966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.