IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924000989.html
   My bibliography  Save this article

A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems: Integrating DEMATEL, ANP, and MCDM methods

Author

Listed:
  • Vaziri Rad, Mohammad Amin
  • Forootan Fard, Habib
  • Khazanedari, Kian
  • Toopshekan, Ashkan
  • Ourang, Shiva
  • Khanali, Majid
  • Gorjian, Shiva
  • Fereidooni, Leila
  • Kasaeian, Alibakhsh

Abstract

The high dependence of single and dual objective optimization algorithms and commercial energy optimization tools on economic criteria has a negative impact on the sub-goals of energy systems. This is due to the typical inverse relationship between economic affairs and other objectives, such as reducing emissions, minimizing energy waste, and enhancing energy security. Optimizing energy systems with high sustainability indexes becomes even more challenging, particularly for off-grid applications that cater to essential human needs like food and water. This need for a practical global decision-making framework based on objective/subjective prioritization has led to a knowledge gap in maximizing sustainability indexes through optimization methods. In this study, for the first time, the 169 targets of Sustainable Development Goals (SDG17) developed by the United Nations are applied to determine the influence of criteria in the relation map using the DEMATEL (Decision Making Trial and Evaluation Laboratory) method. The developed method is applicable to all countries; however, Iran was selected as a case study due to the significant challenge of providing a sustainable power supply for agricultural demands in this country. The resulting relation matrix is then imported into the Analytic Network Process (ANP) to enhance the reliability of criteria weighting. Finally, the weighted multi-criteria decision-making (MCDM) method is employed to address the real greenhouse demand, wherein potential power supply solutions are determined using the predictive dispatch strategy in the HOMER tool. The hybrid solutions include conventional PV, agri-photovoltaic (APV) units, wind turbines, a diesel generator, and a battery bank. The results of the SDG17-DEMATEL-ANP method indicate the prioritization of environmental, economic, technical, energy security, and social objectives, with total decision influence weights of 22.6%, 22.1%, 21.2%, 18.4%, and 15.7% respectively. While the commercial optimization tool shows a higher affordability of conventional PV compared to APV units, the proposed method demonstrates that implementing APV units, despite a slight increase in energy cost (reaching 0.137 $/kWh), can result in a higher sustainability index of about 75.5%, over 48% renewable fraction, <1% unmet load, and >7% improvement in CO2 emission reduction. These advantages are achieved while significantly enhancing the land usage index and without any negative effects on excess electricity levels, capacity factor, and total energy system life cycle emissions. Therefore, the developed framework can be utilized by investors and agricultural demand owners to select energy systems with higher sustainability indexes.

Suggested Citation

  • Vaziri Rad, Mohammad Amin & Forootan Fard, Habib & Khazanedari, Kian & Toopshekan, Ashkan & Ourang, Shiva & Khanali, Majid & Gorjian, Shiva & Fereidooni, Leila & Kasaeian, Alibakhsh, 2024. "A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems: Integrating DEMATEL, ANP, and MCDM methods," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924000989
    DOI: 10.1016/j.apenergy.2024.122715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, Eduardo F. & Villar-Fernández, Antonio & Montes-Romero, Jesús & Ruiz-Torres, Laura & Rodrigo, Pedro M. & Manzaneda, Antonio J. & Almonacid, Florencia, 2022. "Global energy assessment of the potential of photovoltaics for greenhouse farming," Applied Energy, Elsevier, vol. 309(C).
    2. Abbas Mardani & Ahmad Jusoh & Khalil MD Nor & Zainab Khalifah & Norhayati Zakwan & Alireza Valipour, 2015. "Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 28(1), pages 516-571, January.
    3. Weishu Li & Liying Yu & Wenying Xia & Jian Zhou & YvXiu Zhao & Mei Du, 2022. "Riding with the Surging Tide: A Review of MCDM’s Evolution," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1087-1122, May.
    4. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    5. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    6. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Dufo-López, Rodolfo & Cristóbal-Monreal, Iván R. & Yusta, José M., 2016. "Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation," Renewable Energy, Elsevier, vol. 94(C), pages 280-293.
    8. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    9. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    10. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    11. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    12. Ayyildiz, Ertugrul, 2022. "Fermatean fuzzy step-wise Weight Assessment Ratio Analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal-7," Renewable Energy, Elsevier, vol. 193(C), pages 136-148.
    13. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    14. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    15. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    16. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    17. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    18. Breen, M. & Upton, J. & Murphy, M.D., 2020. "Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis," Applied Energy, Elsevier, vol. 278(C).
    19. Mohammad Hossein Ahmadi & Seyyed Shahabaddin Hosseini Dehshiri & Seyyed Jalaladdin Hosseini Dehshiri & Ali Mostafaeipour & Khalid Almutairi & Hoa Xuan Ao & Mohammadhossein Rezaei & Kuaanan Techato, 2022. "A Thorough Economic Evaluation by Implementing Solar/Wind Energies for Hydrogen Production: A Case Study," Sustainability, MDPI, vol. 14(3), pages 1-30, January.
    20. Fernández-Solas, Álvaro & Fernández-Ocaña, Ana M. & Almonacid, Florencia & Fernández, Eduardo F., 2023. "Potential of agrivoltaics systems into olive groves in the Mediterranean region," Applied Energy, Elsevier, vol. 352(C).
    21. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    22. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    23. Poonia, Surendra & Jat, N.K. & Santra, Priyabrata & Singh, A.K. & Jain, Dilip & Meena, H.M., 2022. "Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India," Renewable Energy, Elsevier, vol. 184(C), pages 149-163.
    24. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    25. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    26. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    27. Zoghi, Mahmood & Houshang Ehsani, Amir & Sadat, Mahdis & javad Amiri, Mohammad & Karimi, Sepideh, 2017. "Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 986-996.
    28. Tamjid Shabestari, Sara & Kasaeian, Alibakhsh & Vaziri Rad, Mohammad Amin & Forootan Fard, Habib & Yan, Wei-Mon & Pourfayaz, Fathollah, 2022. "Techno-financial evaluation of a hybrid renewable solution for supplying the predicted power outages by machine learning methods in rural areas," Renewable Energy, Elsevier, vol. 194(C), pages 1303-1325.
    29. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    30. Lee, Hsing-Chen & Chang, Ching-Ter, 2018. "Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 883-896.
    31. Feuerbacher, Arndt & Herrmann, Tristan & Neuenfeldt, Sebastian & Laub, Moritz & Gocht, Alexander, 2022. "Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    32. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toopshekan, Ashkan & Ahmadi, Esmaeil & Abedian, Ali & Vaziri Rad, Mohammad Amin, 2024. "Techno-economic analysis, optimization, and dispatch strategy development for renewable energy systems equipped with Internet of Things technology," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    4. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    5. Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
    6. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Elkadeem, Mohamed R. & Zainali, Sebastian & Lu, Silvia Ma & Younes, Ali & Abido, Mohamed A. & Amaducci, Stefano & Croci, Michele & Zhang, Jie & Landelius, Tomas & Stridh, Bengt & Campana, Pietro Elia, 2024. "Agrivoltaic systems potentials in Sweden: A geospatial-assisted multi-criteria analysis," Applied Energy, Elsevier, vol. 356(C).
    8. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    9. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    10. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    11. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    12. Willockx, Brecht & Reher, Thomas & Lavaert, Cas & Herteleer, Bert & Van de Poel, Bram & Cappelle, Jan, 2024. "Design and evaluation of an agrivoltaic system for a pear orchard," Applied Energy, Elsevier, vol. 353(PB).
    13. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Ji, Zhengsen & Li, Wanying & Niu, Dongxiao, 2024. "Optimal investment decision of agrivoltaic coupling energy storage project based on distributed linguistic trust and hybrid evaluation method," Applied Energy, Elsevier, vol. 353(PA).
    16. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    17. Semeraro, Teodoro & Scarano, Aurelia & Curci, Lorenzo Maria & Leggieri, Angelo & Lenucci, Marcello & Basset, Alberto & Santino, Angelo & Piro, Gabriella & De Caroli, Monica, 2024. "Shading effects in agrivoltaic systems can make the difference in boosting food security in climate change," Applied Energy, Elsevier, vol. 358(C).
    18. Reher, Thomas & Lavaert, Cas & Willockx, Brecht & Huyghe, Yasmin & Bisschop, Jolien & Martens, Johan A. & Diels, Jan & Cappelle, Jan & Van de Poel, Bram, 2024. "Potential of sugar beet (Beta vulgaris) and wheat (Triticum aestivum) production in vertical bifacial, tracked, or elevated agrivoltaic systems in Belgium," Applied Energy, Elsevier, vol. 359(C).
    19. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    20. Mouhib, Elmehdi & Fernández-Solas, Álvaro & Pérez-Higueras, Pedro J. & Fernández-Ocaña, Ana M. & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2024. "Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems," Applied Energy, Elsevier, vol. 359(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924000989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.