IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v336y2023ics0306261923001538.html
   My bibliography  Save this article

Wind power performance assessment at high plateau region: A case study of the wind farm field test on the Qinghai-Tibet plateau

Author

Listed:
  • Gyatso, Ngawang
  • Li, Ye
  • Gao, Zhiteng
  • Wang, Qiang
  • Li, Shoutu
  • Yin, Qiang
  • Chen, Junbo
  • Jin, Peng
  • Liu, Zhengshu
  • Ma, Zengyi
  • Chen, Xuefeng
  • Feng, Jiajia
  • Dorje,

Abstract

The population of countries with high altitudes accounts for about 20.4% of the world’s population, but the annual electricity consumption is still at a low level, which significantly slows down the development of these regions. Wind energy is suggested as the solution, but the progress is very slow due to challenges in operations from the relatively harsh environment. To overcome this challenge while considering Qinghai-Tibet plateau is one of most representative high altitude regions in the world, we recently developed a 22 MW wind farm at an altitude of over 5000 m in Tibet, China, and conducted a one-year field-test campaign using direct-drive permanent-magnet generators (DDPMGs) and doubly fed induction generators (DFIGs) as a case study. In this paper, we report some main results. During resource assessment, it is found that the wind speeds is between 11 m/s and 22 m/s for most winter time with abundant energy production but relatively significant daily fluctuation due to temperature change. From a technology perspective, we found that both DDPMGs and DFIGs can adapt to the ultra-high-altitude environment. Wind turbines with DDPMGs are reliable because of their gearless design, and turbines with DFIGs have a lower cut-in wind speed, which enables them to generate power in regions with low wind speeds. This wind farm generates nearly 60 million kWh of electricity to support 8410 local households per year. It can also eliminate the need to burn 50.24 million kg of cow dung, thereby effectively reducing the local residents’ dependence on burning organic matter for energy. This study is expected to provide guidance to technology developers and governmental policymakers to plan future wind farms in the high altitude area.

Suggested Citation

  • Gyatso, Ngawang & Li, Ye & Gao, Zhiteng & Wang, Qiang & Li, Shoutu & Yin, Qiang & Chen, Junbo & Jin, Peng & Liu, Zhengshu & Ma, Zengyi & Chen, Xuefeng & Feng, Jiajia & Dorje,, 2023. "Wind power performance assessment at high plateau region: A case study of the wind farm field test on the Qinghai-Tibet plateau," Applied Energy, Elsevier, vol. 336(C).
  • Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001538
    DOI: 10.1016/j.apenergy.2023.120789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taele, B.M. & Gopinathan, K.K. & Mokhuts’oane, L, 2007. "The potential of renewable energy technologies for rural development in Lesotho," Renewable Energy, Elsevier, vol. 32(4), pages 609-622.
    2. Boutoubat, M. & Mokrani, L. & Machmoum, M., 2013. "Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement," Renewable Energy, Elsevier, vol. 50(C), pages 378-386.
    3. Liu, Yanfeng & Zhao, Yiting & Chen, Yaowen & Wang, Dengjia & Li, Yong & Yuan, Xipeng, 2022. "Design optimization of the solar heating system for office buildings based on life cycle cost in Qinghai-Tibet plateau of China," Energy, Elsevier, vol. 246(C).
    4. Shen, Wen Zhong & Zhu, Wei Jun & Barlas, Emre & Li, Ye, 2019. "Advanced flow and noise simulation method for wind farm assessment in complex terrain," Renewable Energy, Elsevier, vol. 143(C), pages 1812-1825.
    5. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Wang, Tongguang & Zhu, Chunling, 2020. "Numerical investigations into the idealized diurnal cycle of atmospheric boundary layer and its impact on wind turbine's power performance," Renewable Energy, Elsevier, vol. 145(C), pages 419-427.
    6. Li, Shoutu & Chen, Qin & Li, Ye & Pröbsting, Stefan & Yang, Congxin & Zheng, Xiaobo & Yang, Yannian & Zhu, Weijun & Shen, Wenzhong & Wu, Faming & Li, Deshun & Wang, Tongguang & Ke, Shitang, 2022. "Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments," Renewable Energy, Elsevier, vol. 200(C), pages 970-982.
    7. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    8. Wang, Qiang & Luo, Kun & Yuan, Renyu & Zhang, Sanxia & Fan, Jianren, 2019. "Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations," Energy, Elsevier, vol. 166(C), pages 1168-1180.
    9. Ping, Xiaoge & Jiang, Zhigang & Li, Chunwang, 2011. "Status and future perspectives of energy consumption and its ecological impacts in the Qinghai-Tibet region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 514-523, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    2. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    3. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    4. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    6. Li, Shoutu & Chen, Qin & Li, Ye & Pröbsting, Stefan & Yang, Congxin & Zheng, Xiaobo & Yang, Yannian & Zhu, Weijun & Shen, Wenzhong & Wu, Faming & Li, Deshun & Wang, Tongguang & Ke, Shitang, 2022. "Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments," Renewable Energy, Elsevier, vol. 200(C), pages 970-982.
    7. Jiang, Lu & Xue, Bing & Xing, Ran & Chen, Xingpeng & Song, Lan & Wang, Yutao & Coffman, D’Maris & Mi, Zhifu, 2020. "Rural household energy consumption of farmers and herders in the Qinghai-Tibet Plateau," Energy, Elsevier, vol. 192(C).
    8. Li, Guozhu & Niu, Shuwen & Ma, Libang & Zhang, Xin, 2009. "Assessment of environmental and economic costs of rural household energy consumption in Loess Hilly Region, Gansu Province, China," Renewable Energy, Elsevier, vol. 34(6), pages 1438-1444.
    9. Li, Yong & He, Li & Liu, Fang & Tan, Yi & Cao, Yijia & Luo, Longfu & Shahidehpour, Mohammod, 2018. "A dynamic coordinated control strategy of WTG-ES combined system for short-term frequency support," Renewable Energy, Elsevier, vol. 119(C), pages 1-11.
    10. Cao, Jiufa & Nyborg, Camilla Marie & Feng, Ju & Hansen, Kurt S. & Bertagnolio, Franck & Fischer, Andreas & Sørensen, Thomas & Shen, Wen Zhong, 2022. "A new multi-fidelity flow-acoustics simulation framework for wind farm application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Yi, Yang & Sun, Ke & Liu, Yongqian & Zhang, Jianhua & Jiang, Jin & Liu, Mingyao & Ji, Renwei, 2024. "Experimental investigation into the dynamics and power coupling effects of floating semi-submersible wind turbine combined with point-absorber array and aquaculture cage," Energy, Elsevier, vol. 296(C).
    12. Mensou, Sara & Essadki, Ahmed & Nasser, Tamou & Idrissi, Badre Bououlid & Ben Tarla, Lahssan, 2020. "Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1759-1771.
    13. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    14. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    15. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    16. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2020. "Wind speed modeling for cascade clusters of wind turbines part 1: The cascade clusters of wind turbines," Energy, Elsevier, vol. 205(C).
    17. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    18. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    19. Zhuang, Minghao & Lu, Xi & Peng, Wei & Wang, Yanfen & Wang, Jianxiao & Nielsen, Chris P. & McElroy, Michael B., 2021. "Opportunities for household energy on the Qinghai-Tibet Plateau in line with United Nations’ Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.