IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924009334.html
   My bibliography  Save this article

Machine learning in proton exchange membrane water electrolysis — A knowledge-integrated framework

Author

Listed:
  • Chen, Xia
  • Rex, Alexander
  • Woelke, Janis
  • Eckert, Christoph
  • Bensmann, Boris
  • Hanke-Rauschenbach, Richard
  • Geyer, Philipp

Abstract

In this study, we propose to adopt a novel framework, Knowledge-integrated Machine Learning, for advancing Proton Exchange Membrane Water Electrolysis (PEMWE) development. Given the significance of PEMWE in green hydrogen production and the inherent challenges in optimizing its performance, our framework aims to provide a systematic overview of incorporating data-driven models with domain-specific insights to address the domain challenges. We first identify the uncertainties originating from data acquisition conditions, data-driven model mechanisms, and domain expertise, highlighting their complementary characteristics in carrying information from different perspectives. Building upon this foundation, we showcase how to adeptly decompose knowledge and extract unique information to contribute to the data augmentation, modeling process, and knowledge discovery. We demonstrate a hierarchical three-level framework, termed the ”Ladder of Knowledge-integrated Machine Learning,” in the PEMWE context, applying it to three case studies within a context of cell degradation analysis to affirm its efficacy in interpolation, extrapolation, and information representation. Initial results demonstrate improvements in interpolation accuracy by up to 30%, robustness in extrapolation by enhancing predictive stability across varied operational conditions, and enriched information representation that supports autonomous knowledge discovery. This research lays the groundwork for more knowledge-informed enhancements in ML applications in engineering.

Suggested Citation

  • Chen, Xia & Rex, Alexander & Woelke, Janis & Eckert, Christoph & Bensmann, Boris & Hanke-Rauschenbach, Richard & Geyer, Philipp, 2024. "Machine learning in proton exchange membrane water electrolysis — A knowledge-integrated framework," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924009334
    DOI: 10.1016/j.apenergy.2024.123550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Tu, Hao & Moura, Scott & Wang, Yebin & Fang, Huazhen, 2023. "Integrating physics-based modeling with machine learning for lithium-ion batteries," Applied Energy, Elsevier, vol. 329(C).
    3. Papakonstantinou, Georgios & Algara-Siller, Gerardo & Teschner, Detre & Vidaković-Koch, Tanja & Schlögl, Robert & Sundmacher, Kai, 2020. "Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions," Applied Energy, Elsevier, vol. 280(C).
    4. Lickert, Thomas & Fischer, Stefanie & Young, James L. & Klose, Selina & Franzetti, Irene & Hahn, Daniel & Kang, Zhenye & Shviro, Meital & Scheepers, Fabian & Carmo, Marcelo & Smolinka, Tom & Bender, G, 2023. "Advances in benchmarking and round robin testing for PEM water electrolysis: Reference protocol and hardware," Applied Energy, Elsevier, vol. 352(C).
    5. Geyer, Philipp & Singaravel, Sundaravelpandian, 2018. "Component-based machine learning for performance prediction in building design," Applied Energy, Elsevier, vol. 228(C), pages 1439-1453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    2. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    3. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    4. Mingfei Li & Jiajian Wu & Zhengpeng Chen & Jiangbo Dong & Zhiping Peng & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2022. "Data-Driven Voltage Prognostic for Solid Oxide Fuel Cell System Based on Deep Learning," Energies, MDPI, vol. 15(17), pages 1-20, August.
    5. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    9. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
    11. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Zhou, Liang & Wang, Huawei, 2024. "An adaptive multi-scale feature fusion and adaptive mixture-of-experts multi-task model for industrial equipment health status assessment and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    16. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    17. Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    18. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    19. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924009334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.