IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922015227.html
   My bibliography  Save this article

Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads

Author

Listed:
  • Saberi-Beglar, Kasra
  • Zare, Kazem
  • Seyedi, Heresh
  • Marzband, Mousa
  • Nojavan, Sayyad

Abstract

Climate change has detrimental impacts on the environment and sustainability, leading to employing alternative energy systems such as combined cooling, heat and power (CCHP). The concept of integrated energy systems (IES) allows the coordination of several components, such as electric vehicles (EV), to serve various demands simultaneously. This paper focuses on coordinating the CCHP and electric vehicle parking lot (EVPL) integrated with photovoltaic (PV) technology as renewable energy (RE). The residential energy hub (REH) is modeled to integrate these components to meet the demands and minimize REH’s operating costs and carbon emissions. EVPL functions as dynamic electrical storage besides serving EVs. Stochastic programming is used to model RE, EV, loads, and electricity price uncertainties. Demand response (DR) is applied for shiftable electrical loads. The thermodynamic model of heating and cooling loads is developed with flexibility as integrated demand response (IDR) based on the building’s desired temperature. The emission cost model with penalty factors enforces REH to use less-pollutant energy sources. Subsequently, a risk-aversion strategy, namely downside risk constraint (DRC), is implemented to diminish the associated risk as the consequence of uncertainties for the decision-maker. Different constraint level is applied to provide various conservative decision-making strategies for the operator. Summer and winter scenarios with and without DR and flexible thermal loads were used to evaluate the model’s accuracy. The scheduling problem is solved in IEEE 33-bus test system. The results reveal that the DR could reduce the operation cost by 5% in summer and 8% in winter. Moreover, zero risk for summer and winter is gained at the cost of 10.4% and 3.1% increment in operating costs.

Suggested Citation

  • Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015227
    DOI: 10.1016/j.apenergy.2022.120265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    2. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    3. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    4. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    5. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    6. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    7. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, Pierluigi, 2017. "Evaluating the benefits of coordinated emerging flexible resources in electricity markets," Applied Energy, Elsevier, vol. 199(C), pages 142-154.
    9. Park, Sung-Won & Cho, Kyu-Sang & Hoefter, Gregor & Son, Sung-Yong, 2022. "Electric vehicle charging management using location-based incentives for reducing renewable energy curtailment considering the distribution system," Applied Energy, Elsevier, vol. 305(C).
    10. Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Catalão, João P.S., 2021. "Day-ahead scheduling of energy hubs with parking lots for electric vehicles considering uncertainties," Energy, Elsevier, vol. 229(C).
    11. Qi, Haijie & Yue, Hong & Zhang, Jiangfeng & Lo, Kwok L., 2021. "Optimisation of a smart energy hub with integration of combined heat and power, demand side response and energy storage," Energy, Elsevier, vol. 234(C).
    12. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "Combined heating and cooling networks with part-load efficiency curves: Optimization based on energy hub concept," Applied Energy, Elsevier, vol. 307(C).
    13. Diaz, Gabriel & Inzunza, Andrés & Moreno, Rodrigo, 2019. "The importance of time resolution, operational flexibility and risk aversion in quantifying the value of energy storage in long-term energy planning studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 797-812.
    14. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    15. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    16. Salehimaleh, Mohammad & Akbarimajd, Adel & Valipour, Khalil & Dejamkhooy, Abdolmajid, 2018. "Generalized modeling and optimal management of energy hub based electricity, heat and cooling demands," Energy, Elsevier, vol. 159(C), pages 669-685.
    17. Liang, Weikun & Lin, Shunjiang & Lei, Shunbo & Xie, Yuquan & Tang, Zhiqiang & Liu, Mingbo, 2022. "Distributionally robust optimal dispatch of CCHP campus microgrids considering the time-delay of pipelines and the uncertainty of renewable energy," Energy, Elsevier, vol. 239(PC).
    18. Hashemipour, Naser & Crespo del Granado, Pedro & Aghaei, Jamshid, 2021. "Dynamic allocation of peer-to-peer clusters in virtual local electricity markets: A marketplace for EV flexibility," Energy, Elsevier, vol. 236(C).
    19. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    21. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    22. Kern, Timo & Dossow, Patrick & Morlock, Elena, 2022. "Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes," Applied Energy, Elsevier, vol. 307(C).
    23. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    24. Dini, Anoosh & Hassankashi, Alireza & Pirouzi, Sasan & Lehtonen, Matti & Arandian, Behdad & Baziar, Ali Asghar, 2022. "A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response," Energy, Elsevier, vol. 239(PA).
    25. Yu, Biying & Sun, Feihu & Chen, Chen & Fu, Guanpeng & Hu, Lin, 2022. "Power demand response in the context of smart home application," Energy, Elsevier, vol. 240(C).
    26. Yin, J.N. & Huang, G.H. & Xie, Y.L. & An, Y.K., 2021. "Carbon-subsidized inter-regional electric power system planning under cost-risk tradeoff and uncertainty: A case study of Inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    27. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    28. Sun, Shitong & Kazemi-Razi, S. Mahdi & Kaigutha, Lisa G. & Marzband, Mousa & Nafisi, Hamed & Al-Sumaiti, Ameena Saad, 2022. "Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage," Applied Energy, Elsevier, vol. 305(C).
    29. Ghasemi, Ahmad & Jamshidi Monfared, Houman & Loni, Abdolah & Marzband, Mousa, 2021. "CVaR-based retail electricity pricing in day-ahead scheduling of microgrids," Energy, Elsevier, vol. 227(C).
    30. Li, Jiawen & Yu, Tao & Zhang, Xiaoshun, 2022. "Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    31. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    2. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    3. Mou Wu & Junqiu Fan & Rujing Yan & Xiangxie Hu & Jing Zhang & Yu He & Guoqiang Cao & Weixing Zhao & Da Song, 2024. "Flexible Regulation and Synergy Analysis of Multiple Loads of Buildings in a Hybrid Renewable Integrated Energy System," Sustainability, MDPI, vol. 16(7), pages 1-18, April.
    4. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    5. Yang, Lijun & Jiang, Yaning & Chong, Zhenxiao, 2023. "Optimal scheduling of electro-thermal system considering refined demand response and source-load-storage cooperative hydrogen production," Renewable Energy, Elsevier, vol. 215(C).
    6. Zhang, Hui & Wang, Jiye & Zhao, Xiongwen & Yang, Jingqi & Bu sinnah, Zainab Ali, 2023. "Modeling a hydrogen-based sustainable multi-carrier energy system using a multi-objective optimization considering embedded joint chance constraints," Energy, Elsevier, vol. 278(C).
    7. Kamran Taghizad-Tavana & As’ad Alizadeh & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan, 2023. "A Comprehensive Review of Electric Vehicles in Energy Systems: Integration with Renewable Energy Sources, Charging Levels, Different Types, and Standards," Energies, MDPI, vol. 16(2), pages 1-23, January.
    8. Shi, Zhengkun & Yang, Yongbiao & Xu, Qingshan & Wu, Chenyu & Hua, Kui, 2023. "A low-carbon economic dispatch for integrated energy systems with CCUS considering multi-time-scale allocation of carbon allowance," Applied Energy, Elsevier, vol. 351(C).
    9. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bin & Hu, Weihao & Cao, Di & Ghias, Amer M.Y.M. & Chen, Zhe, 2023. "Novel Data-Driven decentralized coordination model for electric vehicle aggregator and energy hub entities in multi-energy system using an improved multi-agent DRL approach," Applied Energy, Elsevier, vol. 339(C).
    2. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    3. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    4. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    5. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    6. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue, 2024. "Risk-based distributionally robust optimal dispatch for multiple cascading failures in regional integrated energy system using surrogate modeling," Applied Energy, Elsevier, vol. 353(PA).
    7. Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
    8. Pan, Chongchao & Jin, Tai & Li, Na & Wang, Guanxiong & Hou, Xiaowang & Gu, Yueqing, 2023. "Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses," Energy, Elsevier, vol. 270(C).
    9. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
    10. Akbari, Ehsan & Mousavi Shabestari, Seyed Farzin & Pirouzi, Sasan & Jadidoleslam, Morteza, 2023. "Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management," Renewable Energy, Elsevier, vol. 206(C), pages 295-308.
    11. Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Pourakbari-Kasmaei, Mahdi & Lehtonen, Matti & Leonowicz, Zbigniew, 2023. "Participation of hydrogen-rich energy hubs in day-ahead and regulation markets: A hybrid stochastic-robust model," Applied Energy, Elsevier, vol. 339(C).
    12. Qiu, Dawei & Xue, Juxing & Zhang, Tingqi & Wang, Jianhong & Sun, Mingyang, 2023. "Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading," Applied Energy, Elsevier, vol. 333(C).
    13. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Yang, Qiang & Wang, Yubin & Hu, Qinru, 2024. "Coordinated optimization of logistics scheduling and electricity dispatch for electric logistics vehicles considering uncertain electricity prices and renewable generation," Applied Energy, Elsevier, vol. 364(C).
    14. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    15. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    16. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    17. Ghappani, Seyyed Aliasghar & Karimi, Ali, 2023. "Optimal operation framework of an energy hub with combined heat, hydrogen, and power (CHHP) system based on ammonia," Energy, Elsevier, vol. 266(C).
    18. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    20. Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.